Supporting information for

Physical aging of glasses of an organic semiconductor

Shinian Cheng^{1*}, Kritika Jha², Zijian Wang³, Juliana B. Lugo², Hayley Kositzke¹, John H. Perepezko³, Zahra Fakhraai², Mark D. Ediger¹

¹Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States ²Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States ³Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States

*Corresponding Author: chengshinian@gmail.com;

This supporting information file includes:

- 1. Temperature profiles for aging experiments
- 2. Representative fitting parameters of the isotropic Cauchy model for the liquid-cooled
- TPD film
- 3. Representative fitting parameters of the anisotropic Cauchy model for vapor-deposited
- TPD film
- 4. Refractive index for TPD films in glassy and supercooled liquid states
- 5. Determination of $T_{\rm f}$ of TPD films from SE measurements
- 6. Physical aging rate of liquid-cooled TPD films
- 7. DSC and FDSC thermograms of bulk TPD glasses
- 8. Examples for determining T_f of bulk TPD glasses from DSC and FDSC measurements

1. Temperature profiles for aging experiments

Fig. S1: The temperature profiles of aging experiments on liquid-cooled TPD glasses for a) SE, b) DSC, and c) FDSC measurements.

2. Representative fitting parameters of the isotropic Cauchy model for the liquid-cooled TPD film

Fig. S2: Representative isotropic Cauchy model parameters for a 400 nm liquid-cooled TPD film as a function of aging time at T_{aging} =318K. **d**) The obtained Mean Squared Error (MSE) between the model and experimental data.

Fig. S3: Representative isotropic Cauchy model parameters for a 100 nm liquid-cooled TPD film as a function of aging time at T_{aging} =318K. **d**) The obtained Mean Squared Error (MSE) between the model and experimental data

3. Representative fitting parameters of the anisotropic Cauchy model for vapor-deposited TPD film

Fig. S4: Representative anisotropic Cauchy model parameters for a 400 nm vapor-deposited TPD film as a function of aging time at T_{aging} =318K. **d**) The obtained Mean Squared Error (MSE) between the model and experimental data.

Fig. S5: The evolution of refractive indices **a**) n_{xy} and **b**) n_z at 632.8 nm with aging time for a 400 nm vapor-deposited TPD film at $T_{aging}=318$ K. **c**) The determined birefringence, $\Delta n = n_z - n_{xy}$, at 632.8 nm as a function of aging time for vapor-deposited TPD film at $T_{aging}=318$ K.

4. Refractive index for TPD films in glassy and supercooled liquid states

Fig. S6: The refractive index *n* at 632.8 nm as a function of temperature during an aging experiment at T_{aging} =318K for **a**) 400 nm and **b**) 100 nm TPD glasses and supercooled liquid.

5. Determination of $T_{\rm f}$ of TPD films from SE measurements

Fig. S7: Illustration of the method used to calculate T_f of aged TPD glasses at a given aging temperature T_{aging} . The blue dot represents the glass film thickness at T_{aging} after aging for t_{aging} . The dashed blue line indicates the predicted evolution of the film thickness with temperature of the aged glass, characterized by the expansion coefficient *G* determined from Eq. 1. The function of this blue line can be described as h- $h_{aging}=G\times(T-T_{aging})$, where h_{aging} is the glass film thickness after aging for t_{aging} at T_{aging} . The black line represents the extrapolated thickness of the supercooled liquid with expansion coefficient *M* determined from Eq. 1. According to the definition of T_f , its value corresponds to the intersection of the blue and black lines. Therefore, h_{aging} as a function of t_{aging} at a specific T_{aging} determined from SE measurements is converted into T_f as a function of t_{aging} .

Fig. S8: The thickness as a function of aging time for vapor-deposited (blue) and liquid-cooled (pink) TPD thin films at T_{aging} =318 K.

a) 1.000 333.1K 0.999 h/h_o 332.0K 331.0K 328.9K 326.8K 0.998 325.7K 318.4K 308.0K 0.997 2 3 0 1 4 $\log(t_{\text{aging}} \,/\, \mathbf{s})$ 1.000 b) 0.999-0.998 $q + 0^{0} + p$ 0.997 0.996 0.995 0.994 2 3 4 1 Ö $\log(t_{aging} / s)$

6. Physical aging rate of liquid-cooled TPD films

Fig. S9: a) Normalized thickness is plotted as a function of $log(t_{aging})$ of liquid-cooled TPD films at various aging temperatures. h_0 is the film thickness at $t_{aging}=0$ s; b) Illustration of the linear fits (dashed lines) to obtain physical aging rates of liquid-cooled TPD films at various aging temperatures. The *Y* axis is shifted by an amplitude of *b* for the presentation purposes.

7. DSC and FDSC thermograms of bulk TPD glasses

Fig. S10: DSC thermograms of bulk TPD glasses after aging at 333 K, 331K, 328K, 327K, and 320K, for the indicated aging times.

Fig. S11: FDSC thermograms of bulk TPD glasses after aging at 320 K, 327K, 329K, 331K, and 333K for the indicated aging times.

Fig. S12: Enthalpy as a function of temperature for bulk TPD glasses aged at 310K for various aging times. The dashed lines present the extrapolated enthalpy of supercooled liquid of TPD using a second-order polynomial function: $\Delta H=a+b\times T+c\times T^2$. The T_f values are determined as the intersections of the dashed gray and the solid lines, which present the temperature-dependent enthalpy of the TPD glasses.