Supporting Information

Cu-doped CoWO₄/WO₃ heterojunction as peroxymonosulfate activator for rapid degradation of organic pollutants

Huiqing Feng^a, Binsong Wang^a,*, Tianqi Wang^a, Bingyu Zhang^a, Jiuhong Wang^a

Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology, School

of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R.

China

* Correspondence: wangbinsong@hlju.edu.cn

Characterizations

The powder X-ray diffraction (XRD) patterns were acquired on a Bruker D8 Advance diffractometer by using Cu K α radiation ($\lambda = 1.5406$ Å). The Fouriertransform infrared (FT-IR) spectra were collected with a Bruker Equinox 55 spectrometer, KBr as the diluents. The elemental composition of the catalysts, corresponding to the valence state, and the valence band energy were analyzed by Xray photoelectron spectroscopy (XPS, Thermo Scientific Escalab 250Xi) with Al-Ka (hv = 1486.6 eV) as the radiation source. The C 1s peak (binding energy = 284.8 eV) was used as a calibration standard. The photoluminescence (PL) spectra were measured with a PE LS 55 spectrofluorophotometer at excitation wavelength of 325 nm. The electrochemical impedance spectroscopy (EIS) and transient photocurrent (It) measurements were conducted using a CHI660E electrochemical workstation in a standard three-electrode configuration, comprising a catalyst-coated FTO glass as the working electrode, a platinum plate as the counter electrode, and an Ag/AgCl (saturated KCl) electrode as the reference. A 0.5 mol/L Na₂SO₄ aqueous solution was employed as the electrolyte, and all measurements were performed at room temperature (25 °C). EIS measurements were carried out in the frequency range from 0.1 Hz to 1 MHz with a sinusoidal AC amplitude of 5 mV. The transient photocurrent responses were recorded under chopped light irradiation at an applied bias of 0.25 V Ag/AgCl. versus

Supporting Figures

Fig. S1 The XPS spectra of the prepared CoWO₄, WO₃, CW, and CCW.

Fig. S2 The SEM images of CW.

Fig. S3(a) TC degradation in Vis system. (b) Quasi-first-order dynamics of Vis systems.

Fig. S4(a) The activity of CW with different copper doping amounts for TC degradation. (b) The performance of the CCW/PMS/Vis system in removing various

Fig. S6 Leached concentrations of W, Co, and Cu in the CCW/PMS/Vis system.

Fig. S7 Degradation efficiency of TC in the CCW/Vis system within 60 minutes

Fig. S8 The PL spectra of CoWO₄, WO₃, CW, and CCW.

Catalyst	Catalyst dosage (g/L)	PMS/PDS (mM)	Pollutant	Concentration of pollutant (mg/L)	Volume of pollutant (mL)	Degradation rate (%)	Degradation time (min)	Reference
CCW	0.4	1	TC	10	50	100 (Photocatalysis+PMS)	6	Our work
MoS ₂ @TCN-S	1	0.75	TC	10	50	94.3% (Photocatalysis+PMS)	120	[1]
Fe-BP-CCF	0.2	1	TC	10	50	75.5 (Photocatalysis+PMS)	60	[2]
Co ₃ O ₄ /Bi ₄ O ₇ / Bi ₂ O ₃ (CBB)	0.5	0.7	TC	10	100	98.4 (Photocatalysis+PMS)	60	[3]
CuBi ₂ O ₄ /BiOBr	0.2	2	TC	10	100	90.3% (Photocatalysis+PMS)	35	[4]
CW/Co/BNQDs	0.2	1	TC	10	100	94.8% (Photocatalysis+PMS)	30	[5]
Mo ₂ C/MoO _X	-	1.7	TC	50	20	91.7% (Photocatalysis+PMS)	60	[6]
T/NC/MoS ₂ @Ag NFs-DD	-	2	TC	10	100	97.4% (Photocatalysis+PMS)	20	[7]

Table S1 Comparison of CCW with other reported catalysts

g-C ₃ N ₄ /NiCo ₂ O ₄ (CNS-NCO)	0.2	1.2	TC	20	50	96.9% (Photocatalysis+PMS)	30	[8]
ZCCN-30%	0.2	1	TC	10	100	99% (Photocatalysis+PMS)	40	[9]
MnFe ₂ O ₄ /MoS ₂	0.2	1	TC	10	-	92.9 % (PMS)	30	[10]
Fe ₃ O ₄ @PANI-p 600	0.4	4	ТС	20	-	89.8 % (PMS)	90	[11]

Control experiment	Before degradation	After degradation
CCW	15.62 mg/L	10.9 mg/L

References

- 1. B. An, J. Liu, B. Zhu, F. Liu, G. Jiang, X. Duan, Y. Wang and J. Sun, Chem. Eng. J., 2023, 478, 147344.
- 2. Y. Zhang, H. Zhang, J. Yao, Y. Song, W. Li and X. Xuan, Chem. Eng. J., 2024, 483, 149326.
- 3. Y. Zhao, P. Dang, Y. Gao, Y. Li, H. Xie and C. Yang, Environ. Sci. Pollut. Res., 2022, 29, 79184-79198.
- 4. X. Dou, Y. Chen and H. Shi, Chem. Eng. J., 2022, 431, 134054.

- 5. R. Chen, H. Zhang, Y. Dong and H. Shi, J. Mater. Sci. Technol., 2024, 170, 11-24.
- 6. Z. Lian, T. Wu, X. Zhang, S. Cai, Y. Xiong and R. Yang, Chem. Eng. J., 2023, 469, 143774.
- 7. C. Wang, Y. Li, M. Fan, X. Yu, J. Ding, L. Yan, G. Qin, J. Yang and Y. Zhang, Chem. Eng. J., 2024, 479, 147752.
- 8. S. Mao, G. Yao, P. Liu, C. Liu, Y. Wu, Z. Ding, C. Ding, M. Xia and F. Wang, Chem. Eng. J., 2023, 470, 144250.
- 9. X. Li, S. Wang, B. Xu, X. Zhang, Y. Xu, P. Yu and Y. Sun, Chem. Eng. J., 2022, 441, 136074.
- 10. P. Xu, S. Xie, X. Liu, L. Wang, R. Wu and B. Hou, Chem. Eng. J., 2024, 480, 148233.
- 11. Y.-q. Wang, K. Li, M.-y. Shang, Y.-z. Zhang, Y. Zhang, B.-l. Li, Y.-j. Kan, X.-q. Cao and J. Zhang, Chem. Eng. J., 2023, 451, 138655.