Supporting Information

A damping hydrogel with high water retention and strong adhesion for precise bioelectric signals detection

Siyu Lu,^a Jiabei Luo,^a Lingli Qu,^b Kerui Li,^a Yaogang Li,^a Qinghong Zhang,^a Hongzhi Wang,^{*a} and Chengyi Hou^{*a}

a. State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.b. Shanghai Urban Construction Vocational College, Shanghai, 201999, China.

* Corresponding author:

E-mail address: wanghz@dhu.edu.cn (Hongzhi Wang); hcy@dhu.edu.cn (Chengyi Hou)

This file includes:

Figure S1 to S9 Movie S1 Table S1 to S2

Fig. S1: Optical photographs of precursor solutions at CS:H₂O:AA:AC ratios of 1:5:15:75 and 1:5:15:80, respectively.

Fig. S2: Schematic representation of the preparation strategy.

Fig. S3: (a) Loading-unloading test of $CS_1AA_{15}AC_{75}$ hydrogel at different compression rates (b) Calculation of energy dissipated at different compression rates of $CS_1AA_{15}AC_{75}$ hydrogel at 50% strain vs. energy dissipation efficiency.

Fig. S4: Optical photograph of (I) CS₁AA₁₅ (II) CS₁AA₁₅AC₂₅ (III) CS₁AA₁₅AC₅₀ (IV) CS₁AA₁₅AC₇₅ hydrogel transparency.

Fig. S5: Moisture loss of hydrogels with different AC contents during 5 days of storage at (a) 25 °C, 45% RH (b) 25 °C, 54% RH (c) 30 °C and 90% RH.

Fig. S6: Stress-strain curves of CS_1AA_{15} hydrogel stored at 25 °C and 54% RH for 5 days.

Fig. S7: Load-unload test of $CS_1AA_{15}AC_{75}$ hydrogel at different compression rates after 5 days of storage.

Fig. S8: Stress-strain curves of $CS_1AA_{15}AC_{25}$, $CS_1AA_{15}AC_{50}$ hydrogels initial and stored at 25 °C and 54% RH for 5 days

Fig. S9: Impedance of $CS_1AA_{15}AC_{25}$, $CS_1AA_{15}AC_{50}$ hydrogels initial and stored at 25 °C and 54% RH for 5 days.

Fig. S10: SNR of commercial 3M electrode and electrode added $CS_1AA_{15}AC_{75}$ hydrogel with different storage times for detecting ECG signals

hydrogels								
Materials	Conductivity (S cm ⁻¹)	Modulus (kPa)	Adhesion (kPa)	Damping performance	Refs.			
		((111 4)					
СТА	6.2×10-3	200	113	No	1			
PEDOT:PSS+PAA+Fe ³⁺	0.15	800	9.6	No	2			
Co/Ni MOF-PGO-DMAPS-	1.00	36.6	31.3	No	3			
HEA	1.08							
p(EA-co-DAC)/STPP	0.002	800	83	No	4			
PEDOT:PSS+Laser treatment	600	5.7×10 ⁴	/	No	5			
ISF-PSPH	8.5×10 ⁻⁴	20	6.5	No	6			
CS/AA/AC	9.5×10 ⁻⁴	17.35	93.42	Yes	This			
					work			

Table S1: Comparison between the CS/AA/AC hydrogel and other conductive

electrode							
Materials	Water	Adhesion	Resistance to motion	Dofe			
	retention	(kPa)	artifacts	KCIS.			
PGGPE	Yes	25.52	Yes	7			
PAS/PD-IPN	Ver	1	Var	Q			
hydrogel	res	/	I es	0			
In-situ biogel	No	1000	Yes	9			
CS/AA/AC	Yes	93.42	Yes	This work			

 Table S2: Comparison between the CS/AA/AC hydrogel and other hydrogel

Supplementary References:

- J. Zhang, Y. Hu, L. Zhang, J. Zhou and A. Lu, *Nano Micro Lett.*, 2023, 15, 2311-6706.
- Q. Gao, C. Li, M. X. Wang, J. D. Zhu, D. R. Munna, P. Wang, C. H. Zhu, J. F. Gao and C. X. Gao, *J. Mater. Chem. C*, 2025, 13, 5929-5929.
- L. Jiang, Y. Li, Y. Cao, D. Gan, F. Zou, L. Yuan, D. Zhang, C. Xie and X. Lu, Nano Lett., 2025, 25, 2939-2948.
- G. Huang, H. L. Guo, Z. F. Tang, S. W. Peng, H. S. Liang, G. Z. Meng and P. Zhang, *Chem. Mater.*, 2023, **35**, 5953-5962.
- D. Won, J. Kim, J. Choi, H. Kim, S. Han, I. Ha, J. Bang, K. K. Kim, Y. Lee, T.
 S. Kim, J. H. Park, C. Y. Kim and S. H. Ko, *Sci. Adv.*, 2022, 8, eabo3209.
- X. Huang, C. Chen, X. Ma, T. Zhu, W. Ma, Q. Jin, R. Du, Y. Cai, M. Zhang,
 D. Kong, M. Wang, J. a. Ren, Q. Zhang and X. Jia, *Adv. Funct. Mater.*, 2023,
 33, 2302846.
- P. Wang, Y. Lv, J. L. Duan, G. F. Sun, C. Z. Meng, Y. Li, S. J. Guo and T. Zhang, *Nano Energy*, 2025, 136, 110722.

- 8. X. Liu, X. Ji, R. Zhu, J. Gu and J. Liang, *Adv. Mater.*, 2024, **36**, 2309508.
- T. Li, H. Qi, C. Zhao, Z. Li, W. Zhou, G. Li, H. Zhuo and W. Zhai, *Nat. Commun.*, 2025, 16, 88.