Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supplementary Information Portable Upconversion-based Hydrogel Sensors for Visual Quantitative Detection of HOCl

Jing Xu^a, Hanqing Liu^a, Le Ding^a, Tao Wang^{b,*}, Haifeng Zhou^{c,*}, Guangjun Zhou^{a,*}

^a State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100,P. R. China.

^bCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China.

^c School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China.

* Corresponding Author

Email: gjzhou@sdu.edu.cn (G. Zhou); taowang@qust.edu.cn (T. Wang); hfzhou@qlu.edu.cn (H. Zhou)

Figure S1. (a) TEM images of core UCNPs. (b) TEM images of core-shell UCNPs. (c) Size distributions of core UCNPs. (d) Size distributions of core-shell UCNPs.

Figure S2. (a) XRD of PAA-UCNPs, core UCNPs, core-shell UCNPs. (b) Fourier-transform infrared (FTIR) spectra of Bare-UCNPs, OA-UCNCs, and PAA-UCNCs.

Figure S3. (a) Optimization of detection conditions for upconversion nanoprobe (pH). (b) Dynamic response of the upconversion nanoprobe with the addition of 100 μ M HOC1.

Figure S4. (a) The change of fluorescence intensity of UCNPs at different time. (b) The intensity ratio of F_{654}/F_{540} changed with different time.

Figure S 5. (a) The change of fluorescence intensity of UCNPs at different temperature. (b) The intensity ratio of F654/F540 changed with different temperature.

Figure S6. The degree of UCL variation of UCNPs-Carmine at 540 nm and 653 nm at different concentrations of HOCl.

Figure S7. Kinetic study of the upconversion sensor with the addition of 20 μM HOC1.

Figure S8. (a) UV-vis spectra of upconverted nanoprobes after addition of HOCl and various representative analytes (300 μ M). (b) UCL of upconverted nanoprobes after addition of HOCl and various representative analytes (300 μ M).

Figure S9. Portable testing kit for HOCl determination.

Figure S10. Kinetic study of the upconversion hydrogel sensor with the addition of 20 μM HOC1.

Figure S11. (a) The intensity ratio of G/R changed with different temperature. (b) The intensity ratio of G/R changed with different time.

Materials	Methods	LOD	Ref.
RBH1-UCNPs	Fluorometry	0.32 μΜ	[1]
AIE-based fluorescent nanoprobe	Fluorometry	0.41 µM	[2]
naphthalimide-based fluorescent probe	Fluorometry	57 nM	[3]
Nitrogen-doped carbon dots	Fluorometry	3.4 µM	[4]
Fluorescein-based probe	Fluorometry	0.5 μΜ	[5]
Eu-BDC-NH ₂ /DPA	Fluorometry	37 nM	[6]
CyH-UCNPs	Fluorometry	0.9 μΜ	[7]
Zr-UiO-66 MOF	Fluorometry	1.22 µM	[8]
APBA-ARSCDs	Fluorometry	4.47 μΜ	[9]
UCNCs-PB	Fluorometry	1.12 µM	[10]
UCNPS- Carmine	Colorimetry	1.03 µM	This work
UCNPS- Carmine	Fluorometry	0.30 µM	This work

Table S1. Comparison of various methods for HOCl sensing.

Тар	Detection(µM)	$Added(\mu M)$	$Found(\mu M)$	Recovery(%)	RSD(%)
water					
1	2.92	10	13.51	106.0	0.09
2	2.92	20	23.40	102.4	0.11
3	2.92	30	33.07	100.5	0.26
4	2.92	40	40.07	92.9	0.45
5	2.92	50	53.40	101.0	0.35

Table S2. Detection of HOCl in tap water by the hydrogel-based portable sensing platform.

Table S3. Comparison of upconversion hydrogel portable sensing platform with HPLC-MS/MS method for HOCl detection.

Samples	Found in samples (µM)		
Tap water	The upconversion-based hydrogel sensor (n=3)	HPLC-MS/MS (n=3)	
1	13.51	12.04	
2	23.40	23.06	
3	33.07	34.42	
4	40.07	42.04	
5	53.40	52.07	

References

- [1] Zhou Y, Pei W, Wang C, Zhu J, Wu J, Yan Q, Huang L, Huang W, Yao C, Loo J S C, Zhang Q. Rhodamine-Modified Upconversion Nanophosphors for Ratiometric Detection of Hypochlorous Acid in Aqueous Solution and Living Cells. Small, 2014, 10, 3560-3567.
- [2] Huang Y, Zhang P, Gao M, Zeng F, Qin A, Wu S, Tang B Z. Ratiometric detection and imaging of endogenous hypochlorite in live cells and in vivo achieved by using an aggregation induced emission (AIE)-based nanoprobe. Chemical Communications, 2016, 52, 7288-7291.
- [3] Liu S-Z, Xu J-H, Ma Q-J, Wang B-Y, Li L-K, Zhu N-N, Liu S-Y, Wang G-G. A naphthalimide-based and Golgi-targetable fluorescence probe for quantifying hypochlorous acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 286, 121986.
- [4] Wang R, Wang R, Ju D, Lu W, Jiang C, Shan X, Chen Q, Sun G. "ON–OFF–ON" fluorescent probes based on nitrogen-doped carbon dots for hypochlorite and bisulfite detection in living cells. The Analyst, 2018, 143, 5834-5840.
- [5] Jin X, Jia Y, Chen W, Chui P, Yang Z. A reaction-based fluorescent probe for rapid detection of hypochlorite in tap water, serum, and living cells. Sensors and Actuators B: Chemical, 2016, 232, 300-305.
- [6] Sun Y-Q, Cheng Y, Yin X-B. Dual-Ligand Lanthanide Metal–Organic Framework for Sensitive Ratiometric Fluorescence Detection of Hypochlorous Acid. Analytical Chemistry, 2021, 93, 3559-3566.
- [7] Zhang M, Zuo M, Wang C, Li Z, Cheng Q, Huang J, Wang Z, Liu Z. Monitoring Neuroinflammation with an HOCl-Activatable and Blood–Brain Barrier Permeable Upconversion Nanoprobe. Analytical Chemistry, 2020, 92, 5569-76.
- [8] Nandi S, Ghosh S, S. K M, Biswas S. Fluorogenic naked eye "turn-on" sensing of hypochlorous acid by a Zr-based metal organic framework. New Journal of Chemistry, 2021, 45, 14211-1417.
- [9] Simões E F C, da Silva L P, da Silva J C G E, Leitão J M M. Hypochlorite fluorescence sensing by phenylboronic acid-alizarin adduct based carbon dots. Talanta, 2020, 208, 120447.
- [10] Sun L, Sun C, Ge Y, Zhang Z, Zhou J. Ratiometric upconversion nanoprobes for turn-on fluorescent detection of hypochlorous acid. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 439, 114639.