Supplementary Information

Incorporating electron-deficient Cu nanoparticles in photoactive Zr-MOFs for highly efficient amine oxidative coupling with H_2O_2

photosynthesis

Leixin Hou,^{ab}* Ziyan Li,^{ab} Congfa Bian,^{ab} Mi Zhang,^{ab} Daofu Liu,^{ab} Mai Xu^{ab} and Huilin Huang^c*

^a School of Chemistry and Materials Engineering, Huainan Normal University, Huainan,

Anhui, 232000, P. R. China

^b Anhui Engineering Research Center for Photoelectrocatalytic Electrode Materials,

School of Chemistry and Material Engineering, Huainan Normal University, Huainan,

Anhui, 232000, P. R. China

^c School of Chemical and Printing Dyeing Engineering, Henan University of Engineering,

Zhengzhou, 451191, P. R. China

Corresponding Authors

* E-mail: houleixin@hnnu.edu.cn, huanghuilin321@126.com

Contents

- 1. Characterization of Photocatalysts
- 2. Visible-light Photocatalytic Oxidation Mediated by Zr-TPBD-Cu
- 3. References

1. Characterization of Photocatalysts

Figure S1. 3D framework of Zr-TPBD with Zr_6 -SBUs and H_4 TPBD ligand. Hydrogen atoms and solvent molecules are omitted for clarity. Turquiose, Zr; red, O; gray, C; blue, N.

Figure S2. PXRD patterns of Zr-TPBD-Cu in different solvents.

Figure S3. TGA curves of Zr-TPBD and Zr-TPBD-Cu samples.

Figure S4. N₂ adsorption-desorption isotherms of Zr-TPBD (Insets: the pore size distributions). As shown in Figure 1c and S4, both Zr-TPBD nad Zr-TPBD-Cu samples exhibited unsaturated uptake at the point of $P/P_0 = 1$, which were attributed to the existence of the mixed micropore-mesoporous system in both materials. As a proof of concept, it is widely known that porous materials with a mixed micropore (1.23 nm and 1.83 nm) and mesoporous (3.52 nm) system may exhibit a superimposed effect of multi-layer adsorption and capillary coagulation in the high-pressure area, resulting in the adsorption curve not reaching a stable platform.

Dye Uptake Method: Before the dye uptake experiments, Zr-TPBD and Zr-TPBD-Cu were firstly washed with acetone three times for guest molecular exchange. Then, the Zr-TPBD and Zr-TPBD-Cu were soaked in a CH₃CN solution of Esoin Y on oscillator overnight at room temperature. The resulting MOFs were washed with CH₃CN solution thoroughly to remove the residual dye from the MOFs surfaces until the solution become colourless, and then dried under a stream of air. The dried-out MOFs were dissociated by 2mL concentrated hydrochloric acid, and the solution was diluted to 3mL CH₃CN. The absorption experiments were performed on a UV-vis spectroscopy. The concentration of Esoin Y dye was determined by comparing UV-vis absorption with the standard curve (Figure S5).

Figure S5. (a) UV-Vis spectra of Esoin Y in CH₃CN at different concentrations. (b) Plots of the absorbance of Eosin Y at 531 nm as a function of its concentration, and the absorbance of digested Zr-TPBD (pink asterisk) and Zr-TPBD-Cu (violet asterisk) in CH₃CN.

Sample		ts			
	C (wt %)	N (wt %)	O (wt %)	Zr (wt %)	Cu (wt %)
Zr-TPBD-Cu	50.5	2.15	20.3	19.5	5.1

Table S1. Elemental analysis of Zr-TPBD-Cu sample.

Figure S6. (a) SEM and (b) EDS mapping images of Zr-TPBD.

Figure S7. (a) HRTEM image of Zr-TPBD-Cu. (b) The corresponding histogram of nanomicelle sizes obtained from TEM image.

Figure S8. (a) The Diffuse Reflectance FT-IR and (b) the laser Raman confocal microspectrometry of Zr-TPBD and Zr-TPBD-Cu. Fourier transform infrared (FT-IR) spectra were collected in the range of 400-3500 cm⁻¹ as KBr pellets on Thermo Fisher-6700. Raman spectra were collected on a Lab Raman HR Evolution at excitation wavelength of 633 nm in a scan range from 500 to 2000 cm⁻¹ on powdered samples on air.

Figure S9. XPS full-scale spectrum of the as-prepared Zr-TPBD.

Figure S10. (a) Zr3d spectrum, (b) C1s spectrum, (c) O1s spectrum and (d) N1s spectrum of Zr-TPBD.

Figure S11. Transient fluorescence lifetime spectra analyses and fitting results of Zr-TPBD and Zr-TPBD-Cu.

Table S2. Average fluorescence lifetime fitting of Zr-TPBD and Zr-TPBD-Cu.

Sample	A ₁	τ1	A ₂	τ2
Zr-TPBD	0.14118	0.44453	0.02964	7.15898
Zr-TPBD-Cu	0.14089	0.46952	0.0351	8.94261

The decay curves of Zr-TPBD and Zr-TPBD-Cu were fitted based on the equation: $y = y_0$ + $A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)$. The average lifetime was calculated by using the equation: $\tau = (A_1\tau_{1^2} + A_2\tau_{2^2})/(A_1\tau_1 + A_2\tau_2)$.

Figure S12. Adsorption-desorption curves of O_2 on Zr-TPBD and Zr-TPBD-Cu.

Figure S13. Transient photocurrents of Zr-TPBD-Cu sample recorded in air, O_2 and Ar atmospheres.

Figure S14. (e) Kinetic profiles of the oxidation of a-terpinene to 4-isopropyltoluene (solid line) and ascaridole (dotted line) catalysed by Zr-TPBD (pink) and Zr-TPBD-Cu (violet) under 300 W Xe lamp ($\lambda > 420$ nm) illumination. (f) Conversion of aterpinene into 4-isopropyltoluene, ascaridole, and others catalysed by both Zr-MOFs. As shown in Fig. S14, under Xe lamp ($\lambda > 420$ nm) irradiation, the conversion rate of α -terpinene oxidation within 1 h using Zr-TPBD-Cu as photocatalyst can reach 100 % with a selectivity of 76% for associated- O_2^- aromatic product, indicating that the primary ROS was identified as O_2^- during the initial catalytic stages.

2. Visible-light Photocatalytic Oxidation Mediated by Zr-TPBD-Cu

Table S3. Comparison of photocatalytic H_2O_2 production rates of Zr-TPBD-Cu and other						
recently reported photocatalysts.						

Catalysts	Reaction pathway	H2O2 yield (µmol·g ⁻¹ ·h ⁻¹)	AQY (%)	Reference	
Zr-TPBD-Cu	Benzylamine	73500	13.1	This work	
Zr-TPBD	oxidation, ORR	16300	/	I NIS WORK	
Co14(L-CH3)24	WOR, ORR	146.6	/	S1	
BTDB-CN _{0.2}	ORR	1920	2.99	S2	
Ca(II)@ACG	ORR	1021.5	/	S3	
ZrS₃ NBs	ORR	1560	11.4	S4	
NMT400	ORR	1695.3	2.6	S5	
BBTz	ORR	7274	7.14	S6	
N-AT/PTCA	ORR	63520	15.9	S7	
D-A CNP-s	ORR	32000	/	S8	
TPC-3D	ORR	9991	30.9	S9	
Nv-C=N-CN	ORR	3093	1.8	S10	
NiSAPs-PuCN	ORR	342.2	10.9	S11	
UCN-DTDA	ORR	7300	/	S12	
CN-NH ₄ -NaK	ORR	16675	28.4	S13	
CN-KI3-KI-MV	ORR	46400	27.56	S14	
2L-mCN/F-Naf	ORR	5380	/	S15	
CNNT-AI	WOR	1410.2	7.9	S16	
Zn-MOF(lc)/400	ORR	4780	/	S17	
Au-TFPT	ORR, WOR	51987	1.8	S18	

CuBr-dptz	ORR	1874	0.4	S19
EFB-MOF	ORR	1676	/	S20
JNM-25	ORR, OER	17476	4.72	S21
UiO/IKCN	ORR	13300	10.28	S22
C ₃ N ₄ -Zn-N(C)	ORR	7800	26.8	S23
TAPD-(Me)₂ COF	ORR	234.52	/	S24
COF-N32	ORR	605	6.2	S25
Daz COFs	ORR	7327	11.9	S26
ТТН-СТР	ORR	23700	9.6	S27
EO-COF	ORR	2675	6.57	S28
TFPA-TAPT-COF-Q	ORR	11831.6	/	S29
D-A COF-2	ORR, WOR	6930	2.5	S30
PTH-S-COF	ORR, OER	13565	/	\$31

Figure S15. EPR detection of ${}^{1}O_{2}$ species trapped by TEMP in presence of DABCO quencher over Zr-TPBD-Cu under light irradiation.

Figure S16. EPR detection of O_2^{-} species trapped by DMPO in presence of ascorbic acid (AA) quencher over Zr-TPBD-Cu under light irradiation.

Figure S17. (a) UV-Vis absorption spectra of different H₂O₂ concentrations by iodimetry.(b) The standard linear relationship between the absorption and H₂O₂ concentrations.

Figure S18. Time-dependent UV-vis absorption spectra of generated H_2O_2 by iodimetry in H_2O_2 photosynthesis coupled with BA oxidative coupling reaction.

Figure S19. (a) Linear fitting of standard NH₃ concentrations, (b) optical photograph of the solution containing yellow complex formed by Nessler reagent and NH₃ when photocatalytic conversion of different amounts of benzylamine by Zr-TPBD-Cu. NH₃ was produced at the final reaction step of benzylamine coupling, which was verified by Nessler reagent colorimetry.

Figure S20. (a) UV-Vis absorption spectra of 20 mM NH₃, 20 mM H₂O₂ and 20 mM H₂O₂ + 20 mM NH₃ in iodimetry, (b) optical photograph of the solution containing 20 mM NH₃ and iodine reagent. The interference from NH₃ in determining the H₂O₂ yield was also excluded as no chromogenic reaction occurred to NH₃ in iodimetry method.

Figure S21. (a) UV-Vis absorption spectra of 20 mM NH₃, 20 mM H₂O₂ and 20 mM H₂O₂ + 20 mM NH₃ in iodimetry, (b) optical photograph of the solution containing 20 mM NH₃ and iodine reagent. The interference from NH₃ in determining the H₂O₂ yield was also excluded as no chromogenic reaction occurred to NH₃ in iodimetry method.

Figure S22. The ns-TA spectra decay curve monitored at 550 nm for Zr-TPBD-Cu in N_2 and O_2 .

Figure S23. (a) PXRD patterns, (b) FTIR spectra and (c) XPS survey spectra of fresh and used Zr-TPBD-Cu.

N-benzyl-1-phenylmethanimine

¹H NMR (400 MHz, CDCl₃): 4.86 (s, 2H), 7.31-7.45 (m, 8H), 7.81-7.89 (m, 2H), 8.29 (s,

1H)

N-(4-methylbenzyl)-1-(p-tolyl)methanimine

¹H NMR (400 MHz, CDCl₃): 2.34 (s, 3H), 2.38 (s, 3H), 4.76 (s, 2H), 7.14-7.24 (m, 6H),

7.67 (d, 2H, J = 8.0 Hz), 8.34 (s, 1H).

N-(4-methoxybenzyl)-1-(4-methoxyphenyl)methanimine

¹H NMR (400 MHz, CDCl₃): 3.74 (s, 3H), 3.81 (s, 3H), 4.67 (s, 2H), 6.91 (d, 2H, *J* = 8.4 Hz), 7.02 (d, 2H, *J* = 8.8 Hz), 7.26 (d, 2H, *J* = 8.8 Hz), 7.73 (d, 2H, *J* = 8.8 Hz), 8.36 (s, 1H).

N-(4-butylbenzyl)-1-(4-butylphenyl)methanimine

¹H NMR (400 MHz, CDCl₃): 0.97-1.01 (m, 6H), 1.37-1.47 (m, 4H), 1.61-1.71 (m, 4H), 2.64-2.71 (m, 4H), 4.83 (s, 2H), 7.21 (d, 2H, *J* = 8.0 Hz), 7.26-7.31 (m, 4H), 7.75 (d, 2H, *J* = 8.4 Hz), 8.41 (s, 1H).

N-(4-fluorobenzyl)-1-(4-fluorophenyl)methanimine

¹H NMR (400 MHz, CDCl₃): 4.73 (s, 2H), 7.14 (dd, 2H, *J* = 12.4, 5.4 Hz), 7.26 (t, 2H, *J* = 8.8 Hz), 7.35 (dd, 2H, *J* = 8.5, 5.7 Hz), 7.79-7.91 (m, 2H), 8.45 (s, 1H).

N-(4-chlorobenzyl)-1-(4-chlorophenyl)methanimine

¹H NMR (400 MHz, CDCl₃): 4.75 (s, 2H), 7.33-7.40 (m, 4H), 7.50 (d, 2H, *J* = 8.6 Hz), 7.79 (d, 2H, *J* = 8.4 Hz), 8.48 (s, 1H).

N-(4-bromobenzyl)-1-(4-bromophenyl)methanimine

¹H NMR (400 MHz, CDCl₃): 4.72 (s, 2H), 7.29 (d, 2H, J = 8.4 Hz), 7.52 (d, 2H, J = 8.5 Hz),
7.65 (d, 2H, J = 8.8 Hz), 7.72 (d, 2H, J = 8.4 Hz), 8.47 (s, 1H).

3. References

S1. J. N. Lu, J. J. Liu, L. Z. Dong, J. M. Lin, F. Yu, J. Liu and Y. Q. Lan, *Angew. Chem. Int. Ed.*, 2023, **62**, e202308505.

S2. J. Z. Cheng, W. Wang, J. J. Zhang, S. J. Wan, B. Cheng, J. G. Yu and S. W. Cao, *Angew. Chem. Int. Ed.*, 2024, **63**, e202406310.

S3. C. He, J. Y. Lei, X. Li, Z. Y. Shen, L. Z. Wang and J. L. Zhang, *Angew. Chem. Int. Ed.*, 2024, **63**, e202406143.

S4. Z. L. Tian, C. Han, Y. Zhao, W. R. Dai, X. Lian, Y. N. Wang, Y. Zheng, Y. Shi, X. Pan, Z. C. Huang, H. X. Li and W. Chen, *Nat. Commun.*, 2021, **12**, 2039.

S5. C. Yang, S. J. Wan, B. C. Zhu, J. G. Yu and S. W. Cao, *Angew. Chem. Int. Ed.*, 2022, **61**, e202208438.

S6. J. Z. Cheng, S. J. Wan and S. W. Cao, *Angew. Chem. Int. Ed.*, 2023, **62**, e202310476.
S7. R. Ji, Y. M. Dong, X. Y. Sun, C. S. Pan, Y. F. Yang, H. Zhao and Y. F. Zhu, *Appl. Catal. B Environ. Energ.*, 2024, **349**, 123884.

S8. H. F. Yang, C. Li, T. Liu, T. Fellowes, S. Y. Chong , L. Catalano, M. Bahri , W. W. Zhang,
Y. J. Xu, L. J. Liu , W. Zhao, A. M. Gardner, R. Clowes, N. D. Browning, X. B. Li , A. J. Cowan and A. I. Cooper, *Nat. Nanotechnol.*, 2023, **18**, 307–315.

S9. Y. Y. Huang, M. H. Shen, H. J. Yan, Y. G. He, J. Q. Xu, F. Zhu, X. Yang, Y. X. Ye and G. F. Ouyang, *Nat. Commun.*, 2024, **15**, 5406.

S10. X. Zhang, P. J. Ma, C. Wang, L. Y. Gan, X. J. Chen, P. Zhang, Y. Wang, H. Li, L. H. Wang, X. Y. Zhou and K. Zheng, *Energ. Environ. Sci.*, 2022, **15**, 830–842.

S11. X. Zhang, H. Su, P. X. Cui, Y. Y. Cao, Z. Y. Teng, Q. T. Zhang, Y. Wang, Y. B. Feng, R.
Feng, J. X. Hou, X. Y. Zhou, P. J. Ma, H. W. Hu, K. W. Wang, C. Wang, L. Y. Gan, Y. X. Zhao,
Q. H. Liu, T. R. Zhang and K. Zheng, *Nat. Commun.*, 2023, **14**, 7115.

S12. P. Z. Sha, L. Huang, J. Zhao, Z. H. Wu, Q. F. Wang, L. B. Li, D. L. Bu and S. M. Huang, *ACS Catal.*, 2023, **13**, 10474–10486.

S13. F. T. He, Y. M. Lu, Y. Z. Wu, S. L. Wang, Y. Zhang, P. Dong, Y. Q. Wang, C. C. Zhao, S.J. Wang, J. Q. Zhang and S. B. Wang, *Adv. Mater.*, 2024, **36**, 2307490.

S14. C. W. Bai, L. L. Liu, J. J. Chen, F. Chen, Z. Q. Zhang, Y. J. Sun, X. J. Chen, Q. Yang andH. Q. Yu, *Nat. Commun.*, 2024, **15**, 4718.

S15. Y. X. Li, Z. H. Pei, D. Y. Luan and X. W. D. Lou, J. Am. Chem. Soc., 2024, 146, 3343–3351.

S16. H. Tan, P. Zhou, M. X. Liu, Y. Gu, W. X. Chen, H. Y. Guo, J. K. Zhang, K. Yin, Y. Zhou,
C. S. Shang, Q. H. Zhang, L. Gu, N. Zhang, J. Y. Ma, Z. F. Zheng, M. C. Luo and S. J. Guo,
J. Am. Chem. Soc., 2024, 146, 31950–31960.

S17. Y. X. Li, Y. Guo, D. Y. Luan, X. J. Gu and X. W. D. Lou, *Angew. Chem. Int. Ed.*, 2023, 62, e202310847.

S18. P. Wu, F. M. Du, Q. Xue, H. X. Li, M. C. Fu, X. K. Zhou and F. Wang, *Adv. Funct. Mater.*, 2025, **35**, 2420941.

S19. J. P. Zhang, H. Lei, Z. J. Li, F. L. Jiang, L. Chen and M. C. Hong, *Angew. Chem. Int. Ed.*, 2024, **63**, e202316998.

S20. J. Y. Choi, B. Check, X. Y. Fang, S. Blum, H. T. B. Pham, K. Tayman and J. Park, *J. Am. Chem. Soc.*, 2024, **146**, 11319–11327.

S21. Y. Y. Tang, X. Luo, R. Q. Xia, J. Luo, S. K. Peng, Z. N. Liu, Q. Gao, M. Xie, R. J. Wei, G.H. Ning and D. Li, *Angew. Chem. Int. Ed.*, 2024, 63, e202408186.

S22. X. Z. Lu, Z. W. Chen, Z. F. Hu, F. Y. Liu, Z. H. Zuo, Z. X. Gao, H. G. Zhang, Y. C. Zhu, R.
Z. Liu, Y. G. Yin, Y. Cai, D. L. Ma and Q. Z. Zhang, *Adv. Energy Mater.*, 2024, 14, 2401873.
S23. W. K. Wang, R. Liu, J. J. Zhang, T. T. Kong, L. L. Wang, X. H. Yu, X. M. Ji, Q. Q. Liu, R.
Long, Z. Lu and Y. J. Xiong, *Angew. Chem. Int. Ed.*, 2024, 63, e202415800.

S24. C. Krishnaraj, H. S. Jena, L. Bourda, A. Laemont, P. Pachfule, J. Roeser, C. V. Chandran, S. Borgmans, S. M. J. Rogge, K. Leus, C. V. Stevens, J. A. Martens, V. V. Speybroeck, E. Breynaert, A. Thomas and P. V. D. Voort, *J. Am. Chem. Soc.*, 2020, **142**, 20107–20116.

S25. F. Y. Liu, P. Zhou, Y. H. Hou, H. Tan, Y. Liang, J. L. Liang, Q. Zhang , S. J. Guo, M. P. Tong and J. R. Ni, *Nat. Commun.*, 2023, **14**, 4344.

S26. Q. B. Liao, Q. N. Sun, H. C. Xu, Y. D. Wang, Y. Xu, Z. Y. Li, J. W. Hu, D. Wang, H. J. Li and K. Xi, *Angew. Chem. Int. Ed.*, 2023, **62**, e202310556.

S27. S. D. Wang, Z. P. Xie, D. Zhu, S. Fu, Y. S. Wu, H. L. Yu, C. Y. Lu, P. K. Zhou, M. Bonn,
H. I. Wang, Q. Liao, H. Xu, X. Chen and C. Gu, *Nat. Commun.*, 2023, 14, 6891.
S28. P. J. Li, F. Y. Ge, Y. Yang, T. Y. Wang, X. Y. Zhang, K. Zhang and J. Y. Shen, *Angew*.

Chem. Int. Ed., 2024, 63, e202319885.

S29. J. R. Wang, K. P. Song, T. X. Luan, K. Cheng, Q. R. Wang, Y. Wang, W. W. Yu, P. Z. Li and Y. L. Zhao, *Nat. Commun.*, 2024, **15**, 1267.

S30. Y. H. Xie, F. Y. Mao, Q. Y. Rong, X. L. Liu, M. J. Hao, Z. S. Chen, H. Yang, G. I. N. Waterhouse, S. Q. Ma and X. K. Wang, *Adv. Funct. Mater.*, 2024, **34**, 2411077.

S31. Y. Y. Peng, L. W. Yuan, K. K. Liu, Z. J. Guan, S. B. Jin and Y. Fang, *Angew. Chem. Int. Ed.*, 2024, **63**, e202423055.