Constructing Bimetallic Conjugated Coordination Polymers as Efficient Electrocatalyst for Water Splitting

Jia Du,*·Xueguo Liu, Yiming Wu, Xin Wei, Zekai Wu, Jingyuan Jia,

Haiyang Li, Bingke Li, Keliang Wu

*3132085@nyist.edu.cn

School of Biology and Chemical Engineering, Nanyang Institute of

Technology, No.80, Changjiang Road, Nanyang, 473004 Henan, People's

Republic of China

Experimental

1. Materials

All the chemicals and solvents were of analytical grade and employed without further purification. Cobalt chloride hexahydrate ($CoCl_2 \cdot 6H_2O$), nickel chloride hexahydrate (NiCl_2 \cdot 6H_2O), 2,5-dihydroxycyclohex-2, 5-diene-1,4-dione (H₂DHBQ, 98%) were purchased from Aladdin Reagent Co., Ltd. Commercial Pt/C was purchased from Aldrich, RuO₂ (99.9+%)was purchased from Maclean Chemical Reagents Co., LTD. The 5% Nafion solution was purchased from Beijing InnoChem Science & Technology Co., Ltd.

2. Sample preparation

Synthesized of Co-DHBQ: 0.2 mmol $CoCl_2 \cdot 6H_2O$ was weighed and dissolved in the mixed solution of 8 mL water, denoted as solution A. 0.1 mmol H₂DHBQ was dissolved in a mixed solution of 8 mL water, denoted as solution B. The solution A was added to the solution B drop by drop under stirring, and the mixed solution was continued to stir for 30 min after the titration was finished and then left for 3 days. The obtained dark red product was filtered and washed with 20 mL distilled water for 3 times respectively.^[S1-S2]

Synthesized of Ni-DHBQ: the same method was applied for synthesizing Ni-DHBQ expect for a substitution from $CoCl_2 \cdot 6H_2O$ to $NiCl_2 \cdot 6H_2O$.

Synthesized of Co_xNi_{1-x} -DHBQs: For the synthesis of Co_xNi_{1-x} -DHBQs (x =0, 1/2, 1/3, 1/4, 1/5, 1), the same method was applied for synthesizing Co-DHBQ expect for different ratios between Co and Ni were controlled by adjusting the amounts of $CoCl_2 \cdot 6H_2O$ to $NiCl_2 \cdot 6H_2O$. The yield of

78%, 74%, 77%, 80%, 75% and 76% based on H₂DHBQ were determined for the Co-DHBQ, Co_{1/2}Ni_{1/2}-DHBQ, Co_{1/3}Ni_{2/3}-DHBQ, Co_{1/4}Ni_{3/4}-DHBQ, Co_{1/5}Ni_{4/5}-DHBQ, and Ni-DHBQ. And the Anal. Calcd for Co-DHBQ: (CoC6H10O6): C, 30.38%; H, 4.22%; O, 40.51%; found: C, 30.55%; H, 4.17%; O, 40.56%. Anal. Calcd for Co_{1/2}Ni_{1/2}-DHBQ: (Co_{1/2}Ni_{1/2}C6H10O6): C, 30.37%; H, 4.22%; O, 40.51%; found: C, 30.41%; H, 4.16%; O, 40.33%. Anal. Calcd for Co_{1/3}Ni_{2/3}-DHBQ: (Co_{1/3}Ni_{2/3}C6H10O6): C, 30.37%; H, 4.22%; O, 40.51%; found: C, 30.42%; H, 4.23%; O, 40.61%. Anal. Calcd for Co_{1/4}Ni_{3/4}-DHBQ (Co_{1/4}Ni_{3/4}C6H10O6): C, 30.37%; H, 4.22%; O, 40.51%; found: C, 30.52%; H, 4.33%; O, 40.42%. Anal. Calcd for Co_{1/5}Ni_{4/5}-DHBQ (Co_{1/5}Ni_{4/5}C6H10O6): C, 30.37%; H, 4.22%; O, 40.51%; found: C, 30.52%; H, 4.33%; O, 40.42%. Anal. Calcd for Ni-DHBQ: (NiC6H10O6): C, 30.42%; H, 4.22%; H, 4.22%; O, 40.51%; found: C, 30.52%; H, 4.33%; O, 40.56%; found: C, 30.63%; H, 4.18%; O, 40.34%.

3. Characterization

Powder X-ray diffraction (PXRD) data were recorded on a Rigaku MiniFlex600 diffractometer by Cu-Ka radiation at 5° min⁻¹ and the measurement range was from 5.0° to 60° (2 θ) with a step of 0.020° (2 θ). Thermal gravimetric analysis (TGA) data were conducted by a METILER TOLEDO TCA/DSC1 apparatus at a heating rate of 10 °C min⁻¹ from 40 to 800°C. Fourier transform infrared (FT-IR) spectra were conducted in the wavenumber of 400-4000 cm⁻¹ on a PerkinElmer Spectrum Two infrared spectrophotometer at room temperature under N₂ atmosphere. Scanning electron microscopy (SEM) images and EDS mapping images were obtained on a JEOL JSM-7900F scanning electron microscope. N₂ sorption analysis was performed on a SSA-4300 instrument with liquid nitrogen temperature (77 K). Transmission electron microscopy (TEM) images were obtained on a FEI Tecnai G2F20 electron microscope. A Thermo Fisher K-alpha was employed to conduct X-ray photoelectron spectroscopy (XPS) and the binding energies were normalized by the C 1s peak at 284.6 eV with an Al Ka Xray source (hv = 1486.6 eV). The content of Co and Ni in $Co_x Ni_{1-x}$ -DHBQs was measured by an elementar Vario EL cube inductively coupled plasma-optical (ICP) emission spectrometer.

4. Electrochemical measurements

OER performance was defined using an electrochemical workstation (CHI 760E) with a standard three-electrode setup. The reference electrode was the Hg/HgO electrode, while the carbon rod was the counter electrode. The working electrode comprised carbon paper loaded with catalysts. The

measured potentials were converted versus RHE, $E_{RHE} = E_{Hg/HgO}$ $+0.098+0.0592 \times \text{pH}$. The inks for each electrocatalyst were prepared by dispersing 1 mg of therespective sample into 960 µL of DMF containing 40 µL of a 5 wt% Nafon solution, followed by ultrasonic treatment for 30 min. Subsequently, the resulting suspension was applied onto 1 cm \times 1 cm pieces of carbon cloth using a micropipette to achieve a catalyst loading of 1 mg cm⁻², and then dried at ambient temperature for subsequent use. The overpotential (η) for the OER was calculated using the equation: $\eta = E_{RHE}$ -1.23 V. The linear sweep voltammetry (LSV) curves were obtained at a scanning rate of 5 mV s⁻¹. The TS was derived by fitting the linear section following the Tafel equation: $\eta = b \log(i) + a$. The double layer capacitance was evaluated to determine the electrochemically active surface area (ECSA) through CV scans conducted within a nonFaradaic potential range using scan rates ranging from 10 to 100 mV s⁻¹. The double layer capacitance (C_{dl}) was calculated by plotting half of the diference in current density ($\Delta J=(J_{anodic}-J_{cathodic})/2$) at a potential of 1.16 V versus RHE against the scan rate, and this data was analyzed using linear regression fitting. The electrochemical impedance spectroscopy (EIS) for OER test was carried out at a potential of 0.5 V with respect to the Hg/HgO reference electrode, with an amplitude of 5.0 mV over a frequency spectrum ranging from 0.01 to 10^6 Hz. The EIS for HER test was carried out at a potential of -0.1 V with respect to the Hg/HgO reference electrode, with an amplitude of 5.0 mV over a frequency spectrum ranging from 0.01 to 10⁶ Hz. Turnover frequency (TOF) was calculated based on the equation of $TOF = J \times A / J$ $(z \times F \times n)$, where J is the measured current density at a certain potential, A is the electrode area, z is the number of electrons for the oxidation of one molecule (4 for OER, 2 for HER, F is the Faraday constant, and n is the moles of active sites on the electrode. TON = (the number of substrate)molecules transformed in the reaction)/(the number of active centers of the catalyst involved in the reaction)

Fig. S1 The PXRD patterns of the series $Co_x Ni_{1-x}$ -DHBQs.

Fig. S2 The one-dimensional chain structure and three-dimensional space structure of the series $Co_x Ni_{1-x}$ -DHBQs.

Fig. S3 The SEM images of (a) Co-DHBQ, (b) $Co_{1/2}Ni_{1/2}$ -DHBQ, (c) $Co_{1/3}Ni_{2/3}$ -DHBQ, (d) $Co_{1/4}Ni_{3/4}$ -DHBQ, (e) $Co_{1/5}Ni_{4/5}$ -DHBQ, and (f) Ni-DHBQ.

Fig. S4 The EDS-mapping of (a) Co-DHBQ, (b) $Co_{1/2}Ni_{1/2}$ -DHBQ, (c) $Co_{1/4}Ni_{3/4}$ -DHBQ, (d) $Co_{1/5}Ni_{4/5}$ -DHBQ, and (e) Ni-DHBQ.

ICP ICP **ICP** measured **EDS** measured measured measured molar ratio sample molar ratio (Co: Co content Ni content (Co: Ni) Ni) (wt%) (wt%) Co-DHBQ 25.73 --Co1/2Ni1/2-13.76 0.52: 0.48 12.35 0.49: 0.51 DHBQ $Co_{1/3}Ni_{2/3}$ -7.46 18.26 0.29: 0.71 0.33: 0.67 DHBQ Co_{1/4}Ni_{3/4}-5.92 19.81 0.23: 0.77 0.22: 0.8 DHBQ Co1/5Ni4/5-0.18: 0.82 4.63 21.10 0.17: 0.73 DHBQ 25.64 Ni-DHBQ

Table S1 ICP and EDS data of $Co_x Ni_{1-x}$ -DHBQs (x = 0, 1/2, 1/3, 1/4, 1/5, 1).

Fig. S6 N_2 adsorption/desorption isotherms of Co-DHBQ (a), $Co_{1/2}Ni_{1/2}$ -DHBQ (b), $Co_{1/3}Ni_{2/3}$ -DHBQ (c), $Co_{1/4}Ni_{3/4}$ -DHBQ (d), $Co_{1/5}Ni_{4/5}$ -DHBQ (e) and Ni-DHBQ (f).

Fig. S7 (a) Ultraviolet absorption spectra of solid materialsotherms of the series of Co_xNi_{1-x} -DHBQs; band gap of H₂DHBQ (b), Co-DHBQ (c),

Fig. S8 XPS survey spectra of Co-DHBQ, $Co_{1/3}Ni_{2/3}$ -DHBQ and Ni-DHBQ.

Fig. S9 CV curves of Co-DHBQ (a), $Co_{1/2}Ni_{1/2}$ -DHBQ (b), $Co_{1/3}Ni_{2/3}$ -DHBQ (c), $Co_{1/4}Ni_{3/4}$ -DHBQ (d), $Co_{1/5}Ni_{4/5}$ -DHBQ (e) and Ni-DHBQ (f) in OER.

Fig. S10 The chronoamperometry curve of $Co_{1/3}Ni_{2/3}$ -DHBQ at a current density of 50 mA cm⁻².

Fig. S11 1000 cycles curve of $Co_{1/3}Ni_{2/3}$ -DHBQ for OER.

Fig. S12 CV before and after chronoamperometric test and 1000 CV cycles of $Co_{1/3}Ni_{2/3}$ -DHBQ in OER.

Catalyst	η@10 mA	Tafel slope		D (
	cm ⁻² (mV)	$(mV dec^{-1})$	Solution	KeI.
Co _{1/3} Ni _{2/3} -DHBQ	270	62	1 M KOH	This work
$Co_{1/2}Ni_{1/2}$ -CA	349	110	1 M KOH	[S3]
[Co ₃ (HHTP) ₂] _n LB nanosheets	490	83	0.1 M KOH	[S4]
Co/Cu-MOF(3)	395	94	1 M KOH	[S5]
PDA-MOF-0.1	350	66.1	1.0 M KOH	[S6]
Co Tp 3:1(Ni)	371	53.6	1.0 M KOH	[S7]
MOF 2	389	108	1.0 M KOH	[S8]
Ni-MOFs	415	93	1.0 M KOH	[S9]
Ni(PyCHO)Cl ₂	356	79	1.0 M KOH	[S10]
CoIITP[Co ^{III} C] ₂ 3	412	63.6	1.0 M KOH	[S11]
Ni-BDC-1R	225	89	1.0 M KOH	[S12]
Ni-BDC-3R	332	132	1.0 M KOH	[S13]
CoCd-MOF	353	123	1.0 M KOH	[S14]
Co-MOF-C	342	119	1.0 M KOH	[S15]
Co _{1/2} Ni _{1/2} -HIPA	367	115	1.0 M KOH	[S16]

Table S2 Comparison of the OER performance of $Co_{1/3}Ni_{2/3}$ -DHBQ with other reported coordination polymers.

Co/Cu-MOF	395	94	1.0 M KOH	[S17]
Co-BDC	392	77.2	1.0 M KOH	[S18]
Co-BPDC	428	78.8	1.0 M KOH	[S18]
Co2/3Ni1/3-MOF	325	86	1.0 M KOH	[S19]
NiMn-MOFs	280	86	1.0 M KOH	[S20]
(Co1Ni1)2Fe(III)-MOF	309	97.04	1.0 M KOH	[S21]
β-Co(OH)2/Co-MOF	405	124	1.0 M KOH	[S22]
Ni0.8Fe0.2-MOF-B	301	62	1.0 M KOH	[S23]
ZIF-62-(Co)-Fe-CC	335	44.3	1.0 M KOH	[S24]
Co-BTC-IMI	360	88	1.0 M KOH	[S25]
2D CoZIF-9(III) sheets	380	55	1.0 M KOH	[S25]
2D-Co-NS	310	81	1.0 M KOH	[S26]
CoFe-MOF	355	49.05	1.0 M KOH	[S27]

Fig. S13 CV curves of Co-DHBQ (a), $Co_{1/2}Ni_{1/2}$ -DHBQ (b), $Co_{1/3}Ni_{2/3}$ -DHBQ (c), $Co_{1/4}Ni_{3/4}$ -DHBQ (d), $Co_{1/5}Ni_{4/5}$ -DHBQ (e) and Ni-DHBQ (f) in HER.

Fig. S14 LSV before and after chronoamperometric test of $Co_{1/3}Ni_{2/3}$ -DHBQ in HER.

Fig. S15 The chronoamperometry curve of Pt/C at a current density of 10 mA cm⁻² in HER.

Catalyst	η@10 mA cm ⁻² (mV)	Solution	Ref.
Co _{1/3} Ni _{2/3} -DHBQ	177	1 M KOH	This work
Ni-NKU-100	247	1 M KOH	[S28]
Co-BDC	529	1 M KOH	[S29]
Ni-MOF	177	0.1 M KOH	[S30]
bulk NiFe-MOF	196	1 M KOH	[S30]
Co-BTC/CC	437	1 M KOH	[S31]
Fe(OH)x@Cu-MOF	112	1.0 M KOH	[S32]
Fe2Zn-MOF	221	0.1 M KOH	[S33]

Table S3 Comparison of the HER performance of $Co_{1/3}Ni_{2/3}$ -DHBQ with
other reported coordination polymers.

Table S4 TOF of $Co_x Ni_{1-x}$ -DHBQs (x = 0, 1/2, 1/3, 1/4, 1/5, 1).

catalyst	TOF for OER	TOF for HER	TON for OER	TON for HER
Co-DHBQ	0.018	0.022	3465	3565
$Co_{1/2}Ni_{1/2}$ -DHBQ	0.025	0.032	4589	4770
Co _{1/3} Ni _{2/3} -DHBQ	0.039	0.053	8345	9560
Co _{1/4} Ni _{3/4} -DHBQ	0.032	0.047	7456	8765
Co _{1/5} Ni _{4/5} -DHBQ	0.028	0.039	6443	6985
Ni-DHBQ	0.014	0.016	2123	2556

Fig. S16 High-resolution XPS spectra of O 1s for $Co_{1/3}Ni_{2/3}$ -DHBQ after the OER and HER.

Fig. S17 FTIR spectra for $Co_{1/3}Ni_{2/3}$ -DHBQ after the OER and HER.

References

- [S1] T. Yamada, S. Morikawa, H. Kitagawa, B. Chem. Soc. Jpn., 2010, 83, 42.
- [S2] K. Fan, C. Zhang, Y. Chen, G. Zhang, Y. Wu, J. Zou and C. Wang, J. Mater. Chem. C, 2022,10, 2592.
- [S3] J. Du, X. Liu, M. Guo, B. Li, H. Ye and L. Chen, J. Mater. Chem. C, 2024, 12, 16138.
- [S4] M. Zhang, B.-H. Zheng, J. Xu, N. Pan, J. Yu, M. Chen, H. Cao, Chem. Commun. 2018, 54, 13579-13582.
- [S5] Q. Qiu, T. Wang, L. Jing, K. Huang, D. Qin, Int. J. Hydrogen Energ. 2020, 45, 11077-11088.
- [S6] F. Shi, Z. Wang, K. Zhu, X. Zhu and W. Yang, Electrochim. Acta 2022, 416, 140217.
- [S7] S. Sprengel, M. Amiri, A. Bezaatpour, S. Nouhi, S. Baues, G. Wittstock and M. Wark, J. Electrochem. Soc. 2022, 169, 117509.
- [S8] A. Joshi, A. Gaur, P. Sood and M. Singh, Inorg. Chem. 2021, 60, 12685-12690.
- [S9] X. Ma, D. J. Zheng, S. Hou, S. Mukherjee, R. Khare, G. Gao, Q. Ai, B. Garlyyev, W. Li, M. Koch, J. Mink, Y. S. Horn, J. Warnan, A. S. Bandarenka, R. A. Fischer, ACS Catal. 2023, 13, 7587-7596.
- [S10] Y. Wang, Z. Zhou, Y. Lin, Y. Zhang, Peiyan Bi, Q. Jing, Y. Luo, Z. Sun, J. Liao, Z. Gao, Chem. Eng. J. 2023, 462, 142179.
- [S11] A. Aljabour, H. Awada, L. Song, H. Sun, S. Offenthaler, F. Yari, M. Bechmann, M. C. Scharber, W. Schöfberger, Angew. Chem. Int. Ed. 2023, 62, e202302208.
- [S12] L. Zhang, J. Wang, K. Jiang, Z. Xiao, Y. Gao, S. Lin, B. Chen, Angew. Chem. Int. Ed. 2022, 61, e202214794.
- [S13] K. Maity, K. Bhunia, D. Pradhan, K. Biradha, ACS Appl. Mater. Inter. 2017, 9, 37548-37553.
- [S14] J. Du, F. Zhang, L. Jiang, Z. Guo, H. Song, Inorg. Chem. Commun. 2023, 158, 111661.
- [S15] L. Lu, Q. Li, J Du, W Shi, P Cheng, Chin. Chem. Lett. 2022, 33, 2928-2932.
- [S16] Q. Qiu, T. Wang, L. Jing, K. Huang, D. Qin, Int. J. Hydrogen Energ.

2020, 45, 11077-11088.

- [S17] Q. Zha, F. Yuan, G. Qin, Y. Ni. Inorg. Chem. 2020, 2, 1295-1305.
- [S18] Q. Li, L. Lu, J. Liu, W. Shi, P. Cheng. J. Energy Chem. 2021, 63, 230-238.
- [S19] W. Cheng, Z. P. Wu, D. Luan, S. Q. Zang, X. W. Lou, Angew. Chem. Int. Ed. 2021, 60, 26397-26402
- [S21] Y. Wu, Z. Sun, L. Yu, Y. Chen, Z. Li, M. Li, D. Liu, Z. Yan and X. Cao, CrystEngComm, 2024, 26, 6608-6617
- [S22] J. Q. Wu, Z. H. Zhao, Y. W. Hua, Y. L.Wu, S. Y. Ye, J.T. Qian, M. L. Li, L. W. Zhu, Z. Yan, X. Cao, Inorg. Chem. 2023, 62, 15641-15650.
- [S23] H.-D. Zhang, Y.-L. Wu, S.-Y. Ye, Y.-W. Hua, X.-X. You, Z. Yan, M.-L. Li, D. Liu, Y. Meng, X. Cao, ChemElectroChem 2022, 9, e202200246.
- [S24] J. Kang, M. J. Lee, N. G. Oh, J. Shin, S. J. Kwon, C. Hhun, S. J. Kim, H. Yun, H. Jo, K. M. Ok, J. Do, Chem. Mater. 2021, 33, 2804-2813.
- [S25] H. Wang, X. Zhang, F. Yin, W. Chu, B. Chen, J Mater. Chem. A, 2020, 8, 22111-22123.
- [S26] W. Zhou, D. Huang, Y. Wu, J. Zhao, T. Wu, J. Zhang, D. Li, C. Sun, P. Feng, X. Bu, Angew. Chem., Int. Ed. 2019, 58, 4227-4231.
- [S27] J. Gao, J. Cong, Y. Wu, L. Sun, J. Yao, B. Chen, ACS Appl. Energy Mater. 2018, 1, 5140-5144.
- [S28] R. Z. Zhang, L. Lu, P. Cheng and W. Shi, Inorg. Chem. Front. 2024, 11, 7492-7500.
- [S29] D. Zhu, J. Liu, Y. Zhao, Y. Zheng and S. Z. Qiao, Small 2019, 15, 1805511.
- [S30] J. Duan, S. Chen and C. Zhao, Nat. Commun. 2017, 8, 15341.
- [S31] S. N. Shreyanka, J. Theerthagiri, S. J. Lee, Y. Yu and M. Y. Choi, Chem. Eng. J. 2022, 446, 137045.
- [S32] W. Cheng, H. Zhang, D. Luan and X. W. (David) Lou, Sci. Adv. 2021, 7, eabg2580.
- [S33] M. Gu, S.-C. Wang, C. Chen, D. Xiong and F.-Y. Yi, Inorg. Chem. 2020, 59, 6078-6086.