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Experimental
1. Materials
All the chemicals and solvents were of analytical grade and employed 
without further purification. Cobalt chloride hexahydrate (CoCl2·6H2O), 
nickel chloride hexahydrate (NiCl2·6H2O), 2,5-dihydroxycyclohex-2, 5-
diene-1,4-dione (H2DHBQ, 98%) were purchased from Aladdin Reagent 
Co., Ltd. Commercial Pt/C was purchased from Aldrich, RuO2 
(99.9+%)was purchased from Maclean Chemical Reagents Co., LTD. 
The 5% Nafion solution was purchased from Beijing InnoChem Science 
& Technology Co., Ltd.
2. Sample preparation
Synthesized of Co-DHBQ: 0.2 mmol CoCl2·6H2O was weighed and 
dissolved in the mixed solution of 8 mL water, denoted as solution A. 0.1 
mmol H2DHBQ was dissolved in a mixed solution of 8 mL water, 
denoted as solution B. The solution A was added to the solution B drop 
by drop under stirring, and the mixed solution was continued to stir for 30 
min after the titration was finished and then left for 3 days. The obtained 
dark red product was filtered and washed with 20 mL distilled water for 3 
times respectively.[S1-S2]

Synthesized of Ni-DHBQ: the same method was applied for synthesizing 
Ni-DHBQ expect for a substitution from CoCl2·6H2O to NiCl2·6H2O.
Synthesized of CoxNi1-x-DHBQs: For the synthesis of CoxNi1-x-DHBQs 
(x =0, 1/2, 1/3, 1/4, 1/5, 1), the same method was applied for synthesizing 
Co-DHBQ expect for different ratios between Co and Ni were controlled 
by adjusting the amounts of CoCl2·6H2O to NiCl2·6H2O. The yield of 
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78%, 74%, 77%, 80%, 75% and 76% based on H2DHBQ were 
determined for the Co-DHBQ, Co1/2Ni1/2-DHBQ, Co1/3Ni2/3-DHBQ, 
Co1/4Ni3/4-DHBQ, Co1/5Ni4/5-DHBQ, and Ni-DHBQ. And the Anal. Calcd 
for Co-DHBQ: (CoC6H10O6): C, 30.38%; H, 4.22%; O, 40.51%; found: 
C, 30.55%; H, 4.17%; O, 40.56%. Anal. Calcd for Co1/2Ni1/2-DHBQ: 
(Co1/2Ni1/2C6H10O6): C, 30.37%; H, 4.22%; O, 40.51%; found: C, 
30.41%; H, 4.16%; O, 40.33%. Anal. Calcd for Co1/3Ni2/3-DHBQ: 
(Co1/3Ni2/3C6H10O6): C, 30.37%; H, 4.22%; O, 40.51%; found: C, 
30.42%; H, 4.23%; O, 40.61%. Anal. Calcd for Co1/4Ni3/4-DHBQ 
(Co1/4Ni3/4C6H10O6): C, 30.37%; H, 4.22%; O, 40.51%; found: C, 
30.52%; H, 4.33%; O, 40.42%. Anal. Calcd for Co1/5Ni4/5-DHBQ 
(Co1/5Ni4/5C6H10O6): C, 30.37%; H, 4.22%; O, 40.51%; found: C, 
30.52%; H, 4.33%; O, 40.42%. Anal. Calcd for Ni-DHBQ: (NiC6H10O6): 
C, 30.42%; H, 4.22%; O, 40.56%; found: C, 30.63%; H, 4.18%; O, 
40.34%.

3. Characterization
Powder X-ray diffraction (PXRD) data were recorded on a Rigaku 
MiniFlex600 diffractometer by Cu-Ka radiation at 5º min-1 and the 
measurement range was from 5.0º to 60º (2θ) with a step of 0.020º (2θ). 
Thermal gravimetric analysis (TGA) data were conducted by a 
METILER TOLEDO TCA/DSC1 apparatus at a heating rate of 10 ºC 
min-1 from 40 to 800ºC. Fourier transform infrared (FT-IR) spectra were 
conducted in the wavenumber of 400-4000 cm-1 on a PerkinElmer 
Spectrum Two infrared spectrophotometer at room temperature under N2 
atmosphere. Scanning electron microscopy (SEM) images and EDS 
mapping images were obtained on a JEOL JSM-7900F scanning electron 
microscope. N2 sorption analysis was performed on a SSA-4300 
instrument with liquid nitrogen temperature (77 K). Transmission 
electron microscopy (TEM) images were obtained on a FEI Tecnai 
G2F20 electron microscope. A Thermo Fisher K-alpha was employed to 
conduct X-ray photoelectron spectroscopy (XPS) and the binding 
energies were normalized by the C 1s peak at 284.6 eV with an Al Kα X-
ray source (hν = 1486.6 eV). The content of Co and Ni in CoxNi1-x-
DHBQs was measured by an elementar Vario EL cube inductively 
coupled plasma-optical (ICP) emission spectrometer. 
4. Electrochemical measurements
OER performance was defned using an electrochemical workstation (CHI 
760E) with a standard three-electrode setup. The reference electrode was 
the Hg/HgO electrode, while the carbon rod was the counter electrode. 
The working electrode comprised carbon paper loaded with catalysts. The 



measured potentials were converted versus RHE, ERHE= EHg/HgO 
+0.098+0.0592 × pH. The inks for each electrocatalyst were prepared by 
dispersing 1 mg of therespective sample into 960 μL of DMF containing 
40 μL of a 5 wt% Nafon solution, followed by ultrasonic treatment for 30 
min. Subsequently, the resulting suspension was applied onto 1 cm × 1 
cm pieces of carbon cloth using a micropipette to achieve a catalyst 
loading of 1 mg cm-2, and then dried at ambient temperature for 
subsequent use. The overpotential (η) for the OER was calculated using 
the equation: η= ERHE-1.23 V. The linear sweep voltammetry (LSV) 
curves were obtained at a scanning rate of 5 mV s-1. The TS was derived 
by ftting the linear section following the Tafel equation: η=b log (j)+a. 
The double layer capacitance was evaluated to determine the 
electrochemically active surface area (ECSA) through CV scans 
conducted within a nonFaradaic potential range using scan rates ranging 
from 10 to 100 mV s-1. The double layer capacitance (Cdl) was calculated 
by plotting half of the diference in current density (ΔJ=(Janodic-Jcathodic)/2) 
at a potential of 1.16 V versus RHE against the scan rate, and this data 
was analyzed using linear regression ftting. The electrochemical 
impedance spectroscopy (EIS) for OER test was carried out at a potential 
of 0.5 V with respect to the Hg/HgO reference electrode, with an 
amplitude of 5.0 mV over a frequency spectrum ranging from 0.01 to 106 
Hz. The EIS for HER test was carried out at a potential of -0.1 V with 
respect to the Hg/HgO reference electrode, with an amplitude of 5.0 mV 
over a frequency spectrum ranging from 0.01 to 106 Hz. Turnover 
frequency (TOF) was calculated based on the equation of TOF = J × A / 
(z × F × n), where J is the measured current density at a certain potential, 
A is the electrode area, z is the number of electrons for the oxidation of 
one molecule (4 for OER, 2 for HER, F is the Faraday constant, and n is 
the moles of active sites on the electrode. TON = (the number of substrate 
molecules transformed in the reaction)/(the number of active centers of 
the catalyst involved in the reaction)



Fig. S1 The PXRD patterns of the series CoxNi1-x-DHBQs.

Fig. S2 The one-dimensional chain structure and three-dimensional space 
structure of the series CoxNi1-x-DHBQs.



Fig. S3 The SEM images of (a) Co-DHBQ, (b) Co1/2Ni1/2-DHBQ, (c) 
Co1/3Ni2/3-DHBQ, (d) Co1/4Ni3/4-DHBQ, (e) Co1/5Ni4/5-DHBQ, and (f) Ni-
DHBQ.

Fig. S4 The EDS-mapping of (a) Co-DHBQ, (b) Co1/2Ni1/2-DHBQ, (c) 
Co1/4Ni3/4-DHBQ, (d) Co1/5Ni4/5-DHBQ, and (e) Ni-DHBQ.



Table S1 ICP and EDS data of CoxNi1-x-DHBQs (x = 0, 1/2, 1/3, 1/4, 1/5, 
1).

sample

ICP 

measured 

Co content 

(wt%)

ICP 

measured 

Ni content 

(wt%)

ICP measured 

molar ratio 

(Co: Ni)

EDS measured 

molar ratio (Co: 

Ni)

Co-DHBQ 25.73 -- --

Co1/2Ni1/2-

DHBQ
13.76 12.35 0.52: 0.48 0.49: 0.51

Co1/3Ni2/3-

DHBQ
7.46 18.26 0.29: 0.71 0.33: 0.67

Co1/4Ni3/4-

DHBQ
5.92 19.81 0.23: 0.77 0.22: 0.8

Co1/5Ni4/5-

DHBQ
4.63 21.10 0.18: 0.82 0.17: 0.73

Ni-DHBQ 25.64 --



Fig. S5 TGA of CoxNi1-x-DHBQs (x = 0, 1/2, 1/3, 1/4, 1/5, 1).

Fig. S6 N2 adsorption/desorption isotherms of Co-DHBQ (a), Co1/2Ni1/2-
DHBQ (b), Co1/3Ni2/3-DHBQ (c), Co1/4Ni3/4-DHBQ (d), Co1/5Ni4/5-DHBQ 
(e) and Ni-DHBQ (f).

Fig. S7 (a) Ultraviolet absorption spectra of solid materialsotherms of the 
series of CoxNi1-x-DHBQs; band gap of H2DHBQ (b), Co-DHBQ (c), 



Co1/2Ni1/2-DHBQ (d), Co1/3Ni2/3-DHBQ (e), Co1/4Ni3/4-DHBQ (f), 
Co1/5Ni4/5-DHBQ (g) and Ni-DHBQ (h).

Fig. S8 XPS survey spectra of Co-DHBQ, Co1/3Ni2/3-DHBQ and Ni-
DHBQ.

Fig. S9 CV curves of Co-DHBQ (a), Co1/2Ni1/2-DHBQ (b), Co1/3Ni2/3-
DHBQ (c), Co1/4Ni3/4-DHBQ (d), Co1/5Ni4/5-DHBQ (e) and Ni-DHBQ (f) 
in OER.



Fig. S10 The chronoamperometry curve of Co1/3Ni2/3-DHBQ at a current 
density of 50 mA cm-2.

Fig. S11 1000 cycles curve of Co1/3Ni2/3-DHBQ for OER.



Fig. S12 CV before and after chronoamperometric test and 1000 CV 
cycles of Co1/3Ni2/3-DHBQ in OER.

Table S2 Comparison of the OER performance of Co1/3Ni2/3-DHBQ with 
other reported coordination polymers.

Catalyst
η@10 mA 

cm-2 (mV)

Tafel slope

(mV dec−1)
Solution Ref.

Co1/3Ni2/3-DHBQ 270 62 1 M KOH This work

Co1/2Ni1/2-CA 349 110 1 M KOH [S3]

[Co3(HHTP)2]n LB nanosheets 490 83 0.1 M KOH [S4]
Co/Cu-MOF(3) 395 94 1 M KOH [S5]
PDA-MOF-0.1 350 66.1 1.0 M KOH [S6]
Co Tp 3:1(Ni) 371 53.6 1.0 M KOH [S7]

MOF 2 389 108 1.0 M KOH [S8]
Ni-MOFs 415 93 1.0 M KOH [S9]

Ni(PyCHO)Cl2 356 79 1.0 M KOH [S10]
CoIITP[CoIIIC]2 3 412 63.6 1.0 M KOH [S11]

Ni-BDC-1R 225 89 1.0 M KOH [S12]
Ni-BDC-3R 332 132 1.0 M KOH [S13]
CoCd-MOF 353 123 1.0 M KOH [S14]
Co-MOF-C 342 119 1.0 M KOH [S15]

Co1/2Ni1/2-HIPA 367 115 1.0 M KOH [S16]



Co/Cu-MOF 395 94 1.0 M KOH [S17]
Co-BDC 392 77.2 1.0 M KOH [S18]

Co-BPDC 428 78.8 1.0 M KOH [S18]
Co2/3Ni1/3-MOF 325 86 1.0 M KOH [S19]

NiMn-MOFs 280 86 1.0 M KOH [S20]
(Co1Ni1)2Fe(Ⅲ)-MOF 309 97.04 1.0 M KOH [S21]
β-Co(OH)2/Co-MOF 405 124 1.0 M KOH [S22]
Ni0.8Fe0.2-MOF-B 301 62 1.0 M KOH [S23]
ZIF-62-(Co)-Fe-CC 335 44.3 1.0 M KOH [S24]

Co-BTC-IMI 360 88 1.0 M KOH [S25]
2D CoZIF-9(III) sheets 380 55 1.0 M KOH [S25]

2D-Co-NS 310 81 1.0 M KOH [S26]
CoFe-MOF 355 49.05 1.0 M KOH [S27]

Fig. S13 CV curves of Co-DHBQ (a), Co1/2Ni1/2-DHBQ (b), Co1/3Ni2/3-
DHBQ (c), Co1/4Ni3/4-DHBQ (d), Co1/5Ni4/5-DHBQ (e) and Ni-DHBQ (f) 
in HER.



Fig. S14 LSV before and after chronoamperometric test of Co1/3Ni2/3-
DHBQ in HER.

Fig. S15 The chronoamperometry curve of Pt/C at a current density of 10 
mA cm-2 in HER.



Table S3 Comparison of the HER performance of Co1/3Ni2/3-DHBQ with 
other reported coordination polymers.

Catalyst
η@10 mA 

cm-2 (mV)
Solution Ref.

Co1/3Ni2/3-DHBQ 177 1 M KOH This work

Ni-NKU-100 247 1 M KOH [S28]

Co-BDC 529 1 M KOH [S29]
Ni-MOF 177 0.1 M KOH [S30]

bulk NiFe-MOF 196 1 M KOH [S30]
Co–BTC/CC 437 1 M KOH [S31]

Fe(OH)x@Cu-MOF 112 1.0 M KOH [S32]
Fe2Zn-MOF 221 0.1 M KOH [S33]

Table S4 TOF of CoxNi1-x-DHBQs (x = 0, 1/2, 1/3, 1/4, 1/5, 1).

catalyst TOF for OER TOF for HER TON for OER TON for HER

Co-DHBQ 0.018 0.022 3465 3565

Co1/2Ni1/2-DHBQ 0.025 0.032 4589 4770

Co1/3Ni2/3-DHBQ 0.039 0.053 8345 9560

Co1/4Ni3/4-DHBQ 0.032 0.047 7456 8765

Co1/5Ni4/5-DHBQ 0.028 0.039 6443 6985

Ni-DHBQ 0.014 0.016 2123 2556



Fig. S16 High-resolution XPS spectra of O 1s for Co1/3Ni2/3-DHBQ after 
the OER and HER.

Fig. S17 FTIR spectra for Co1/3Ni2/3-DHBQ after the OER and HER.
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