Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Reversible Luminescence of Bi³⁺ Ions by X-Ray Induced Crystal Field Regulation

Linglu Kuang^{*a*}, Zhichao Liu^{*a*}, Yuan Xue^{*a*,*b*}, Xinran Wang^{*a*}, Dedan Mu^{*a*}, Hao Song^{*a*}, Yichun Liu^{*a*}, Peng Zhang^{*a*}, Xuhui Xu^{*a*}

^a Yunnan Joint International Laboratory of Optoelectronic Materials and Devices, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.

^b National Engineering Research Center for Rare Earth, GRIREM Advanced Materials Co., Ltd.

* Corresponding Author: Peng Zhang, E-mails: <u>pengzhangkmust@163.com</u> Xuhui Xu, E-mails: <u>xuxuh07@126.com</u>

Figure S1. Variation of lattice parameters of Cs_2KGdF_6 : x%Bi³⁺ (where x = 0, 1, 2, 3,

4, 5).

Figure S2. The UV absorption spectra of Cs_2KGdF_6 : Bi³⁺ before and after X-ray irradiation, and the illustration is the band gap changes before and after X-ray

Figure S3. Diagram of log(I/x) versus log(x).

The critical distance (R_c) of adjacent doped ions is an important criterion for comprehending the non-radiative energy transfer mechanism. In general, non-radiative energy transfer among neighboring dopants can be attributed to either exchange interaction or multipole-multipole interaction. When R_c is less than 5 Å, exchange interaction will occur. Otherwise, multipole-multipole interaction will occur. Based on Blasse theory, the R_c parameters can be calculated by Equation:

$$R_c = 2 \left[\frac{3V}{4\Pi X_c Z} \right]^{\frac{1}{3}}$$

where V is the volume per unit cell, X_c is the critical concentration, and Z is the number of positions that the doped ions can be occupy. The calculated value Rc is 23.97 Å. Since the critical distance between the two samples is greater than 5 Å, the influence of interaction can be excluded. The type of electrical multipolar interaction can be determined according to the following Dexter formula:

$$\frac{l}{x} = K \left[1 + \beta(x) \frac{\theta}{3} \right]^{-1}$$

where I and x represent emission intensity and the content of doped ions, respectively. k and β are constants. When the value of θ is 6, 8, 10, it represents the dipole - dipole, dipole - quadrupole, and quadrupole -quadrupole interactions, respectively. **Fig. S2** depicts the pattern of log(I/x) with log(x) of these samples. The curve can be well fitted to a linear correlation with a slope equal to -1.126. The calculated q value approaches 6 indicating that the quenching mechanism is dipole-dipole interaction in the Cs₂KGdF₆ host.

Figure S4. (a)RPL (Radio photoluminescence) of Cs₂KGdF₆: 3%Bi³⁺ under RT and (b) 365 nm UV irradiation.

Figure S5. (a) XRD of Cs₂KGdF₆: 3%Bi³⁺ before and after X-ray irradiation and after heating. (b) TL of Cs₂KGdF₆: x%Bi³⁺ (x = 0, 1, 2, 3, 4, 5).

Figure S6. XRD before and after X-ray irradiation and after heating of (a) Cs₂KGdF₆: Sm³⁺, (b) Cs₂KGdF₆:Eu³⁺, (c) Cs₂KGdF₆:Tb³⁺, (d) Cs₂KGdF₆:Dy³⁺, (e) Cs₂KGdF₆:Mn²⁺.

Figure S7. PL before and after X-ray irradiation and after heating of (a) Cs_2KGdF_6 : Sm³⁺, (b) Cs_2KGdF_6 : Eu³⁺, (c) Cs_2KGdF_6 : Tb³⁺, (d) Cs_2KGdF_6 : Dy³⁺, (e) Cs_2KGdF_6 : Mn²⁺.

Figure S8. XRD of Cs₂KGdF₆: 3%Bi³⁺ (a) before and (b) after X-ray irradiation and (c) after heating.

Figure S9. Temperature dependent spectrum of Cs₂KGdF₆: 3%Bi³⁺.

Figure S10. XRD of (a) Cs_2LiGdF_6 : Bi^{3+} (b) Cs_2NaGdF_6 : Bi^{3+} (c) Cs_2NaGdF_6 : Bi^{3+} . PL, RL, and RPL of (d) Cs_2LiGdF_6 : Bi^{3+} (e) Cs_2NaGdF_6 : Bi^{3+} (f) Cs_2NaGdF_6 : Bi^{3+} .

Figure S11. The RPL intensity of the Cs_2KGdF_6 : Bi^{3+} as a function of the X-ray dose.

Figure S12. The gray value map corresponding to Figure 5h.