Supplementary Information

Near Room-Temperature Chemical Vapor Deposition of 2D SbI3 on

Van der Waals Substrates for Photodetector Applications

Ziliang Zhao^{‡a}, Ming Wu^{‡b}, Hao Wu^a, Xiangzhou Chen^a, Haiyan Ma^a, Dehu Li^a, Guanzhong Wang^a, Qiuyun Yang^{a,c*}, Zhibin Shao^{b*} and Hong Wang^{a*}

Figure S1. Antimony triiodide synthesized on mica substrates. (a) Schematic illustration of an CVD growth setup. (b–d) Optical images of SbI₃ thin crystals grown on mica substrate.

Figure S2. Optical images of SbI₃ grown on SiO₂/Si substrate.

Figure S3. Optical image of the SbI₃ thin crystal. The optical image shows that the size of single crystal SbI₃ can reach up to 50 μ m.

Figure S4. Optical images of SbI₃ thin crystals on mica substrates. (a) First batch of the SbI₃ samples. (b) Second batch of the SbI₃ samples. (c) Third batch of the SbI₃ samples. (d) Fourth batch of the SbI₃ samples.

Figure S5. Air stability of the sample characterized by optical images. (a) The optical images of the as-prepared sample. (b) The optical images of the sample exposed in air for 15 min. (c) The optical images of the sample exposed in air for 30 min.

Figure S6. X-ray photoelectron spectroscopy (XPS) survey spectra of SbI₃ on mica.

Figure S7. (a) Low-magnification TEM image of a SbI₃ crystal. (b) SAED pattern of SbI₃.

Figure S8. X-ray diffraction (XRD) pattern of SbI₃ on mica.

Figure S9. Raman spectroscopy of Antimony triiodide. (a) Raman spectra of SbI_3 with thicknesses varying from 20 nm to bulk. (b) A_g , E_g peak frequencies plotted against sample thickness.

Figure S10. The optical absorption spectra of Antimony triiodide. (a) UV-vis absorption spectra of SbI₃. (b) The Tauc plot method for determining the bandgap of SbI₃.

Figure S11. Optical microscopy images of (a) a WS_2 and (b) a SbI_3 devices. Notably, the WS_2 region is large and extends across the entirety of the area depicted in Figure a.

Figure S12. (a) Photoresponse curves measured at a 1 V bias under illumination with monochromatic light of progressively increasing wavelengths. (b) Intensity of monochromatic light as a function of wavelength.

Figure S13. The optical absorption spectra of WS_2 and SbI_3/WS_2 heterostructure on sapphire substrates.

Figure S14. (a) Time-resolved dark current of a SbI₃-modified WS₂ photodetector measured under dark condition at V=1 V and (b) Noise spectral density curve derived from the Fourier transform of the dark current traces, illustrating the frequency-dependent characteristics of the noise signal.

Figure S15. Photoresponse curve recorded over 3000 seconds under cyclic illumination at a wavelength of 520 nm.

Device material	Bias voltage (V)	Responsivity	Reference
		$(\mathbf{A} \cdot \mathbf{W}^{-1})$	
Multilayer WS ₂	5	9.2 × 10 ⁻⁵	[1]
Monolayer WS ₂	10	5× 10-3	[2]
SnSe/Monolayer WS ₂	5	9.9 × 10 ⁻²	[3]
BP/WS ₂	5	1.2×10^{-1}	[4]
GOQDs/WS ₂	5	1.25× 10 ⁻²	[5]
CdSe-QDs/WS ₂	10	2×10^{-5}	[6]
PdSe ₂ /WS ₂	2	3.91 × 10 ⁻³	[7]
SbI ₃ /WS ₂	1	1.58× 10 ⁻²	this work

Table S1. Responsivity comparison of pristine WS₂ Photodetectors and Sensitizer-Modified WS₂ Photodetectors.

Table S2. Performance comparison for WS_2 -based photodetectors incorporating advanced responsivity enhancement strategies.

Photodetectors	Strategy	Bias voltage	Responsivity	Referenc
			$(\mathbf{A} \cdot \mathbf{W}^{-1})$	e
Au NPs/WS ₂	Plasmonic	2 V	1050	[8]
In atoms/WS ₂	Photogating	$V_{ds} = 1 V$ $V_{gs} = 2 V$	2630	[9]
WSe ₂ puddle/WS ₂	Photogating	$V_{ds} = 3 V$ $V_{gs} = 40 V$	300	[10]
Si/WS ₂	Heterojunction	5 V	8.3	[11]
MoS ₂ /WS ₂	Heterojunction	-	2.3	[12]

References

- N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones and M. Terrones, *Advanced Functional Materials*, 2013, 23, 5511-5517.
- 2. C. Lan, Z. Zhou, Z. Zhou, C. Li, L. Shu, L. Shen, D. Li, R. Dong, S. Yip and J. C. Ho, *Nano Research*, 2018, **11**, 3371-3384.
- 3. Z. Jia, J. Xiang, F. Wen, R. Yang, C. Hao and Z. Liu, ACS Applied Materials & Interfaces, 2016, 8, 4781-4788.
- 4. Z. Jia, J. Xiang, C. Mu, F. Wen, R. Yang, C. Hao and Z. Liu, *Journal of Materials Science*, 2017, **52**, 11506-11512.
- 5. H. J. W. Li, K. Huang and Y. Zhang, *Materials Research Express*, 2019, **6**, 045902.
- 6. Q. Feng, Y. Li, F. Gao, Y. Sun, J. Yan, W. Liu, H. Xu and Y. Liu, ACS Photonics, 2020, 7, 1857-1865.
- 7. X. Kang, C. Lan, F. Li, W. Wang, S. Yip, Y. Meng, F. Wang, Z. Lai, C. Liu and J. C. Ho, *Advanced Optical Materials*, 2021, **9**, 2001991.
- 8. Y. Liu, W. Huang, W. Chen, X. Wang, J. Guo, H. Tian, H. Zhang, Y. Wang, B. Yu, T.-L. Ren and J. Xu, *Applied Surface Science*, 2019, **481**, 1127-1132.
- 9. C.-H. Yeh, H.-C. Chen, H.-C. Lin, Y.-C. Lin, Z.-Y. Liang, M.-Y. Chou, K. Suenaga and P.-W. Chiu, ACS Nano, 2019, **13**, 3269-3279.
- T.-H. Tsai, Z.-Y. Liang, Y.-C. Lin, C.-C. Wang, K.-I. Lin, K. Suenaga and P.-W. Chiu, ACS Nano, 2020, 14, 4559-4566.
- 11. E. Wu, D. Wu, C. Jia, Y. Wang, H. Yuan, L. Zeng, T. Xu, Z. Shi, Y. Tian and X. Li, *ACS Photonics*, 2019, **6**, 565-572.
- 12. Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li and Q. Bao, *ACS Nano*, 2016, **10**, 573-580.