Experimental and DFT Study of Boron Nitride Films Grown on SiO₂/Si Substrates via Chemical Vapor Deposition

Mingyuan Wang,^{a,b,*} Ruo-wang Chen,^a Hui Shi,^a Guiwu Liu,^c Shuangying Lei,^a Neng

Wan^{a,*}

^aKey Laboratory of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, 210096, Nanjing, China;

^bSchool of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, China

°School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013,

China;

Fig. S1 (a, b) AFM topography images and corresponding (c, d) phase images of BN thin films grown on a SiO_2/Si substrate after the surface of the Ni film was etched with $FeCI_3$ solution.

Fig. S2 (a) The X-ray photoelectron spectroscopy, and (b) Si 2p and (c) O 1s spectrum of

Fig. S3 EDS mapping of the direct growth of BN on SiO₂/Si substrate after the partial removal of polycrystalline Ni films.

Fig. S4 (a) The X-ray photoelectron spectroscopy, and (b) Ni 2p spectrum for the surface of Ni. (c) The X-ray photoelectron spectroscopy, and (d) Ni 2p spectrum for the reverse side of Ni.

Fig. S5 The structures of the initial state (IS), transition state (TS), and final state (FS) structures for N and B atoms from the first layer to the third layer for Ni(111), Ni(110) and Ni(111)&(110). The purple, green and silver balls represent the Ni, B and N atoms, respectivelly.