Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supporting Information

for

Molecular engineering of π -extended pyrrolo[1,2- α]quinoxaline-

based D-A materials for electrochromic devices

Kexin Zhao ^{a,b}, Wenquan Wang ^{a,b}, Chengyi Kang ^{a,b}, Ziyi Zhang ^{a,b}, Haitao Xu ^{a,b}, Quan Liu ^{*a,b}, Huiping Dai^{*c}

^a Shaanxi Province Key Laboratory of Catalytic, Shaanxi University of Technology, Hanzhong 723001, P. R. China.

^b School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, P. R. China.

^c School of Biolegical Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, P. R. China.

Table of Contents

1. Synthesis and characterization	S2
2. Photophysical properties	S10
3. Electrochemical properties	S11
4. Crystal structure data	S14
5. Cartesian coordination of all the optimized structures	S17
Reference	S35

1. Synthesis and characterization

1.1 Synthesis of compounds 3a, 3b and 3c

A mixture of various substituted 1 (3.0 mmol), 4-bromobenzaldehyde 2 (3.0 mmol, 1.0 *equiv.*), EtOH (10 mL) were added to a round-bottomed flask (25 mL). After AcOH (0.6 mmol, 36 mg, 0.2 *equiv.*) was added. Then the reaction mixture was heated up to 85 °C and stirred for 12 h. After completion of the reaction, the solvent evaporation under reduced pressure, the residue was purified by column chromatography on silica gel to afford the product **3**.

3a: white solid (726 mg, yield 75%), ¹H NMR (400 MHz, Chloroform-*d*) δ: 7.95 (dd, *J* = 2.9, 1.3 Hz, 1H), 7.91 ~ 7.85 (m, 2H), 7.84 ~ 7.80 (m, 1H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.70 ~ 7.64 (m, 2H), 7.33 (dd, *J* = 8.3, 2.0 Hz, 1H), 6.92 (dd, *J* = 4.1, 1.3 Hz, 1H), 6.87 (dd, *J* = 4.1, 2.7 Hz, 1H), 2.50 (s, 3H). ¹³C NMR (100 MHz, Chloroform*d*) δ: 153.0, 137.4, 136.1, 135.2, 131.7, 130.2, 130.0, 128.8, 125.0, 124.9, 124.0, 114.5, 113.8, 113.4, 108.1, 21.1. HRMS-ESI (m/z) calcd. for C₁₈H₁₃BrN₂ [M+H]⁺: 337.0262; found: 337.0257.

3b: white solid (657 mg, yield 65%), ¹H NMR (400 MHz, Chloroform-*d*) δ : 8.05 ~ 7.99 (m, 2H), 7.88 (t, *J* = 6.9 Hz, 3H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.47 (t, *J* = 7.3 Hz, 1H), 6.96 (d, *J* = 3.5 Hz, 1H), 6.92 ~ 6.89 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 153.2, 137.3, 136.1, 131.8, 130.3, 127.8, 127.2, 125.5, 125.0, 124.2, 114.9, 114.2, 113.7, 108.6. HRMS-ESI (m/z) calcd. for C₁₇H₁₁BrN₂ [M+H]⁺: 323.0106; found: 323.0180

3c: white solid (739 mg, yield 64%), ¹H NMR (400 MHz, Chloroform-*d*) δ : 8.31 (s, 1H), 8.04 (s, 1H), 7.96 (dd, J = 8.6, 3.1 Hz, 1H), 7.89 (d, J = 8.0 Hz, 2H), 7.74 (d, J = 8.6 Hz, 1H), 7.69 (d, J = 8.0 Hz, 2H), 7.03 (d, J = 4.0 Hz, 1H), 6.97 (d, J = 3.9 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 154.5, 136.8, 135.9, 131.9, 130.2, 129.2, 127.8, 127.8, 127.5, 125.1, 124.8, 124.7, 124.0, 124.0, 124.0, 123.0, 115.6, 115.1, 114.4, 109.6. HRMS-ESI (m/z) calcd. for C₁₈H₁₀BrF₃N₂ [M+H]⁺: 390.9979; found: 391.0040.

1.2 Synthesis of compounds CH₃-PQ-TPA, PQ-TPA and CF₃-PQ-TPA

Under nitrogen protection, a mixture of **3** (0.5 mmol), 4,4'-di-*tert*-butyldiphenylamine **4** (0.5 mmol, 1.1 *equiv.*), Cs_2CO_3 (325.8 mg, 1.0 mmol, 2.0 *equiv.*), $Pd_2(dba)_3$ (14 mg, 0.015 mmol, 0.03 *equiv.*), XPhos (28.6 mg, 0.06 mmol, 0.12 *equiv.*) and toluene (10 mL) were added to a sealing tube. Then, the reaction mixture was heated up to 100 °C and stirred for 5 h. Next, the reaction was quenched with brine, extracted by dichloromethane and dried by anhydrous Na₂SO₄. After the solvent evaporation under reduced pressure, the residue was purified by column chromatography on silica gel (PE: DCM= 1:1) to afford the product.

CH₃-PQ-TPA: yellow solid (228 mg, 85%), ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.94 (dd, J = 2.8, 1.3 Hz, 1H), 7.90 ~ 7.86 (m, 2H), 7.83 (t, J = 1.5 Hz, 1H), 7.75 (d, J = 8.3 Hz, 1H), 7.31 (d, J = 2.3 Hz, 2H), 7.30 (q, J = 2.8, 2.3 Hz, 3H), 7.19 ~ 7.16 (m, 2H), 7.14 ~ 7.09 (m, 4H), 7.04 (dd, J = 4.1, 1.3 Hz, 1H), 6.86 (dd, J = 4.0, 2.7 Hz, 1H), 2.50 (s, 3H), 1.34 (s, 18H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 153.8, 149.7, 146.3, 144.7, 136.3, 134.9, 131.2, 129.8, 129.4, 128.1, 126.1, 125.3, 124.9, 124.6, 121.7, 114.2, 113.5, 113.3, 108.3, 34.3, 31.4, 21.1. HRMS-ESI (m/z) calcd. for C₃₈H₃₉N₃ [M+H]⁺: 538.3144; found: 538.3146.

PQ-TPA: yellow solid (209 mg, 80%), ¹H NMR (400 MHz, Chloroform-*d*) δ : 8.03 (d, J = 7.7 Hz, 1H), 8.00 ~ 7.97 (m, 1H), 7.88 (t, J = 9.1 Hz, 3H), 7.52 ~ 7.41 (m, 2H), 7.31 (d, J = 8.6 Hz, 4H), 7.18 (d, J = 8.6 Hz, 2H), 7.11 (d, J = 8.6 Hz, 4H), 7.07 (d, J = 3.7 Hz, 1H), 6.91 ~ 6.87 (m, 1H), 1.34 (s, 18H). ¹³C NMR (100 MHz, Chloroform-*d*) δ :154.0, 149.9, 146.4, 144.6, 130.0, 129.5, 129.0, 127.1, 126.2, 125.4, 125.3, 124.6, 121.7, 114.5, 113.9, 113.6, 108.7, 34.4, 31.5. HRMS-ESI (m/z) calcd. for C₃₇H₃₇N₃ [M+H]+: 524.2987; found: 524.3058.

CF₃-PQ-TPA: yellow solid (266 mg, 90%), ¹H NMR (400 MHz, Chloroform-*d*) δ : 8.29 (s, 1H), 8.00 (s, 1H), 7.93 (d, J = 8.6 Hz, 1H), 7.90 ~ 7.87 (m, 2H), 7.69 (d, J = 8.5 Hz, 1H), 7.31 (dd, J = 8.6, 2.0 Hz, 5H), 7.16 (dd, J = 8.7, 1.9 Hz, 3H), 7.11 (dd, J = 8.6, 1.9 Hz, 6H), 6.94 (dt, J = 4.1, 2.3 Hz, 1H), 1.34 (d, J = 2.0 Hz, 18H). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 155.2, 150.3, 146.7, 144.5, 136.2, 130.2, 129.5, 129.1, 127.5(d, J = 4.4 Hz), 127.5, 126.2, 125.5, 124.8, 123.2(d, J = 3.8 Hz), 123.2, 121.3, 117.4, 115.1, 114.7, 114.2, 109.7, 34.4, 31.4. HRMS-ESI (m/z) calcd. for C₃₈H₃₆F₃N₃ [M+H]⁺: 592.2861; found: 592.2940.

Fig. S12 ¹³C NMR (100 MHz, Chloroform-d)

2. Photophysical properties

2.1 Lippert-Mataga equation

The Lippert-Mataga equation is used to determine the relationship between the Stokes displacement Δv_{ST} and different solvent polarities, which fits the Stokes displacement and oriented dipoles curves of molecules in solvents of different polarities, and is used to estimate the variation $(\mu_{CT} - \mu_g)$ in dipole moment between the ground and excited states.

$$\Delta v_{\rm ST} = \Delta v_{ST}^0 + \left[\frac{2}{4\pi_{\varepsilon}0 \ hca3}\right] \times (\mu_{CT} - \mu_g)^2 \times \Delta f(\varepsilon, n)$$

 Δv_{ST} is the Stokes shift; $(\mu_{CT} - \mu_g)$ is the dipole moment variation between the excited and ground states; ε_0 is the vacuum permittivity; *h* is the Planck's constant; *c* is the celerity of light; *a* is the value of the Onsager cavity radius; $\Delta f(\varepsilon, n)$ defined by:

$$\Delta f(\varepsilon,n) = \frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n2 - 1}{2n2 + 1}$$

 ε is the solvent dielectric constant; *n* is the solvent refractive index.

In addition, the ground state dipole moments μ_g of compounds CH₃-PQ-TPA, PQ-TPA and CF₃-PQ-TPA were calculated by DFT calculations, which were 0.609 D, 1.135 D and 4.537 D, respectively.

Table S1. Detailed absorption and emission peak positions of CH₃-PQ-TPA in different solvents.

Solvents	З	n	$\Delta f(\varepsilon, n)$	λ_{ex} (nm)	λ_{em} (nm)	v_a (cm ⁻¹)	(cm^{-1})	v_a - v_f (cm ⁻¹)
<i>n</i> -Hexane	1.9	1.375	0.0012	376	433	26596	23095	3501
Toluene	2.38	1.494	0.014	378	461	26455	21692	4763
Ethyl acetate	6.02	1.372	0.2	373	483	26810	20704	6106
Dichloromethane	8.93	1.424	0.217	378	507	26455	19724	6731
Dimethyl formamide	37	1.427	0.276	375	520	26667	19231	7436
Dimethyl sulfoxide	48.9	1.48	0.264	380	528	26316	18939	7376
Triethylamine	2.42	1.401	0.048	376	450	26596	22222	4374
Butyl ether	3.08	1.399	0.096	376	433	26596	23095	3501
Isopropyl ether	3.88	1.368	0.145	374	458	26738	21834	4904

Table S2. Detailed absorption and emission peak positions of PQ-TPA in different solvents.

Solvents	З	п	$\Delta f(\varepsilon,n)$	$\begin{matrix} \lambda_{ex} \\ (nm) \end{matrix}$	$\begin{array}{c} \lambda_{em} \\ (nm) \end{array}$	v_a (cm ⁻¹)	v _f (cm ⁻¹)	$\stackrel{\nu_a \text{-}\nu_f}{(\text{cm}^{\text{-}l})}$
<i>n</i> -Hexane	1.9	1.375	0.0012	375	435	26667	22989	3678
Toluene	2.38	1.494	0.014	377	461	26525	21692	4833
Ethyl acetate	6.02	1.372	0.2	371	487	26954	20534	6420
Dichloromethane	8.93	1.424	0.217	377	511	26525	19569	6956
Dimethyl formamide	37	1.427	0.276	373	526	26810	19011	7798
Dimethyl sulfoxide	48.9	1.48	0.264	378	531	26455	18832	7623
Triethylamine	2.42	1.401	0.048	375	451	26667	22173	4494
Butyl ether	3.08	1.399	0.096	375	452	26667	22124	4543
Isopropyl ether	3.88	1.368	0.145	374	460	26738	21739	4999

Solvents	Э	п	$\Delta f(\varepsilon,n)$	$_{(nm)}^{\lambda_{ex}}$	$\begin{array}{c} \lambda_{em} \\ (nm) \end{array}$	v_a (cm ⁻¹)	(cm^{-1})	v_a - v_f (cm ⁻¹)
<i>n</i> -Hexane	1.9	1.375	0.0012	390	451	25641	22173	3468
Toluene	2.38	1.494	0.014	390	478	25641.	20921	4721
Ethyl acetate	6.02	1.372	0.2	383	513	26110	19493	6616
Dichloromethane	8.93	1.424	0.217	388	533	25773	18762	7011
Dimethyl formamide	37	1.427	0.276	384	555	26042	18018	8024
Dimethyl sulfoxide	48.9	1.48	0.264	388	561	25773	17825	7948
Triethylamine	2.42	1.401	0.048	389	470	25707	21277	4430
Butyl ether	3.08	1.399	0.096	390	467	25641	21413	4228
Isopropyl ether	3.88	1.368	0.145	389	480	25707	20833	4874

Table S3. Detailed absorption and emission peak positions of CF₃-PQ-TPA in different solvents.

2.2 Oxidative titration fluorescence spectroscopy

Fig. S13. (a) Photoluminescence spectra recorded upon oxidation of **CH₃-PQ-TPA** and (b) **PQ-TPA** and (c) **CF₃-PQ-TPA** by Cu(ClO₄)₂ in DCM/ACN (1:1,V/V) solvent.

3. Electrochemical properties

3.1 Cyclic voltammetry of compound 3a, 3b and 3c

Fig. S14. (a) Cyclic voltammetry of compound **3a**,**3b** and **3c** $(1 \times 10^{-3} \text{ M})$ in DCM/ACN (1:1, V/V) solvent and 0.1 M Bu₄NPF₆ are referenced to the Ag/Ag⁺ couple. Scan rate: 100 mV•s⁻¹.

3.2 Electron transfer constants

The electron transfer constant of the molecule during the redox process can be calculated from the measured cyclic voltammetry curve according to the Nicholson method.

According to the Randles-Sevcik equation:

$$i_{\rm p} = 2.69 \times 10^5 A D_0^{1/2} v^{1/2} c^* = R v^{1/2}$$

 i_p is the peak current, A; A is the electrode area, cm²; D_0 is the diffusion velocity, cm²•s⁻¹; v is the scanning velocity, V•s⁻¹; c^* is the concentration, mol•cm⁻³. R is the slope of the fitted curve corresponding to different peak currents at different scan rates, and is a constant.

According to the relationship between the dimensionless constant ψ and the peak voltage difference ΔE_p :

$$\psi = (-0.6288 + 0.0021 \Delta E_n)/(1 - 0.017 \Delta E_n)$$

Bringing ψ and *R* into Nicholson's formula:

$$k_{\rm ET} = \psi \left(\frac{\pi D0Fv}{RT} \right)^{1/2} = 184 \,\psi R$$

 $k_{\rm ET}$ is the electron transfer rate constant; F is the Faraday constant, C•mol⁻¹; T is the temperature, °C.

Fig. S15 Cyclic voltammetry at different scanning rate and evaluation of electron-transfer constant.

Table. S4 Electron transfer constants k_{ET} and related data for CH₃-PQ-TPA, PQ-TPA and CF₃-PQ-TPA.

Compound	R ₁	$\Delta E_{P1}(V)$	Ψ_1	\mathbf{R}_2	$\Delta E_{P2}(V)$	Ψ2	k _{ET1}	k _{ET2}
CH ₃ -PQ-TPA	4.20×10-5	7.55×10 ⁻²	1.66	5.90×10-5	8.03×10 ⁻²	1.26	0.013	0.014
PQ-TPA	3.57×10-5	7.03×10 ⁻²	2.46	5.81×10-5	7.18×10 ⁻²	2.18	0.016	0.023
CF ₃ -PQ-TPA	4.95×10-5	7.57×10 ⁻²	1.64	3.65×10-5	7.01×10 ⁻²	2.52	0.015	0.017

3.3 Fabrication of the electrochromic device

Fig. S16. Device architectures schema and tools.

3.4 Stability of electrochromic switching response in ECDs

Fig. S17. Cyclic stability of electrochromic devices.

Fig. S18. Optical density versus charge density curve for ECD.

3.6 Switching times and electrochemical cyclic stability

3.5 Coloration efficiency

Fig. S19. Switching times and cyclic stability of electrochromic devices.

4. Crystal structure data

Empirical formula	$C_{38}H_{39}N_3$
Formula weight	537.72
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	P21
a/Å	5.85735(15)
b/Å	11.2386(3)
c/Å	23.0899(6)
$lpha/^{\circ}$	90
β/°	90.4439(9)
$\gamma/^{\circ}$	90
Volume/Å ³	1519.93(7)
Z	2
pcalcg/cm ³	1.175
µ/mm ⁻¹	0.521
F(000)	576.0
Crystal size/mm ³	$0.1\times0.05\times0.03$
Radiation	Cu Kα (λ = 1.54184)
2Θ range for data collection/°	7.658 to 153.678

Table.S5 Crystal data and structure refinement for compound CH₃-PQ-TPA (CCDC: 2270406).

Index ranges	$-7 \le h \le 7, -13 \le k \le 12, -28 \le l \le 28$
Reflections collected	52046
Independent reflections	5819 [$R_{int} = 0.0555$, $R_{sigma} = 0.0221$]
Data/restraints/parameters	5819/117/418
Goodness-of-fit on F ²	1.035
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0357, wR_2 = 0.0822$
Final R indexes [all data]	$R_1 = 0.0370, wR_2 = 0.0831$

Empirical formula C37H37N3 Formula weight 523.69 Temperature/K 273.15 triclinic Crystal system Space group P-1 a/Å 9.533(7) b/Å 10.637(7) c/Å 15.514(10) α/° 72.169(18) β/° 86.418(19) γ/° 83.43(2) Volume/Å3 1487.1(17) Ζ 2 pcalcg/cm3 1.170 μ/mm^{-1} 0.068 F(000) 560.0 Crystal size/mm³ $0.15 \times 0.15 \times 0.11$ Radiation MoKa ($\lambda = 0.71073$) 2Θ range for data collection/° 4.042 to 50.038 Index ranges $\text{-}11 \leq h \leq 11, \, \text{-}12 \leq k \leq 12, \, \text{-}18 \leq l \leq 18$ 30997 Reflections collected Independent reflections 5252 $[R_{int} = 0.0875, R_{sigma} = 0.0645]$ 5252/0/368 Data/restraints/parameters Goodness-of-fit on F^2 1.028 Final R indexes $[I \ge 2\sigma(I)]$ $R_1 = 0.0530, wR_2 = 0.1397$ Final R indexes [all data] $R_1 = 0.0808, wR_2 = 0.1628$

Table.S6 Crystal data and structure refinement for compound PQ-TPA (CCDC: 2270406).

Empirical formula	$C_{38}H_{36}F_3N_3$
Formula weight	591.70
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	16.10910(10)
b/Å	17.5255(2)
c/Å	35.0880(4)
a/°	79.4790(10)
β/°	79.6190(10)
$\gamma/^{\circ}$	79.8640(10)
Volume/Å ³	9474.65(17)
Z	12
pcalcg/cm ³	1.244
µ/mm ⁻¹	0.691
F(000)	3744.0
Crystal size/mm ³	$0.15\times0.13\times0.11$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	5.186 to 148.2
Index ranges	$-20 \le h \le 18, -21 \le k \le 21, -43 \le l \le 43$
Reflections collected	112254
Independent reflections	$37030 \ [R_{int} = 0.0346, \ R_{sigma} = 0.0423]$
Data/restraints/parameters	37030/1480/2918
Goodness-of-fit on F ²	1.030
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0521, wR_2 = 0.1394$
Final R indexes [all data]	$R_1 = 0.0703, wR_2 = 0.1535$

Table.S7 Crystal data and structure refinement for compound CF₃-PQ-TPA (CCDC: 2412717).

5. Cartesian coordination of all the optimized structures

СН₃-РQ-ТРА

Zero-point correction=	0.675596 (Hartree/Particle)
Thermal correction to Energy=	0.712773
Thermal correction to Enthalpy=	0.713717
Thermal correction to Gibbs Free Ene	rgy= 0.602841
Sum of electronic and zero-point Ener	rgies= -1635.208669
Sum of electronic and thermal Energie	es= -1635.171492
Sum of electronic and thermal Enthalp	pies= -1635.170548
Sum of electronic and thermal Free En	nergies= -1635.281424

С	-8.61662200	0.69092600	0.06433000
С	-7.90601800	1.90656700	-0.01589500
С	-6.51946800	1.85324300	-0.05942200
С	-5.81485300	0.63188200	-0.03029600
С	-6.56018700	-0.56851100	0.04333700
С	-7.95973500	-0.53015200	0.09426000
Ν	-4.43509200	0.66766300	-0.04960800
С	-3.76364500	-0.46083200	-0.00966800
С	-4.42168300	-1.74292600	-0.00021100
Ν	-5.82652600	-1.75848300	0.04488400
С	-2.28504900	-0.36247200	-0.00046500
С	-1.46365700	-1.26406000	0.69587800
С	-0.08127000	-1.11661800	0.71193800
С	0.53598900	-0.06611600	0.01135800

С	-0.28302100	0.84557600	-0.68145800
С	-1.66280300	0.70394900	-0.67204900
Ν	1.94248400	0.07470300	0.00739700
С	2.53654100	1.36896700	0.01025000
С	2.78413200	-1.07303500	0.00085200
С	3.92187800	-1.12980600	0.82040600
С	4.75108000	-2.24546800	0.79826900
С	4.48553000	-3.35817900	-0.01871400
С	3.34116700	-3.28759600	-0.82465500
С	2.50930500	-2.16796200	-0.82719500
С	3.61607800	1.66149400	-0.83682300
С	4.20411000	2.92111900	-0.81850600
С	3.74208300	3.94882800	0.02216900
С	2.65779800	3.64151700	0.85519500
С	2.06879000	2.37695900	0.86133000
С	-4.00130300	-3.07083900	-0.07192200
С	-5.15266000	-3.88307000	-0.05425100
С	-6.26147700	-3.05726400	0.01886700
Н	-5.92523300	2.76028600	-0.11370700
Н	-8.53270600	-1.44896300	0.15695800
Н	-1.91112100	-2.06255300	1.27713700
Н	0.52859000	-1.81065500	1.27951200
Н	0.17302300	1.66183200	-1.23075000
Н	-2.28726100	1.41461000	-1.20209600
Н	4.15257500	-0.29378200	1.47234200
Н	5.62123100	-2.24871100	1.44836800
Н	3.08582200	-4.10981400	-1.48329500
Н	1.63977000	-2.14326800	-1.47571700
Н	3.99129500	0.89515000	-1.50710100
Н	5.03771000	3.10674900	-1.48953300

Н	2.26029500	4.38931900	1.53177600
Н	1.23882800	2.17066300	1.52919100
Н	-2.97901000	-3.40373700	-0.15415800
Н	-5.18170400	-4.96281600	-0.09702900
Н	-7.31134400	-3.30113100	0.03758200
С	4.42248800	5.32916600	-0.00176400
С	4.31632700	5.93233600	-1.42273700
С	3.77559600	6.31659700	0.98739600
С	5.91456700	5.17577200	0.37765400
Н	4.79367100	5.29475800	-2.17267300
Н	3.26934500	6.06403500	-1.71457400
Н	4.80545400	6.91232200	-1.45892300
Н	3.84785600	5.96363600	2.02131700
Н	4.28796500	7.28250300	0.93259600
Н	2.71929100	6.49042800	0.75784600
Н	6.41605700	6.15009100	0.35759900
Н	6.02126100	4.75902200	1.38445600
Н	6.44484600	4.51495400	-0.31433600
С	5.43083200	-4.57225400	-0.00104500
С	5.48980200	-5.16027200	1.42892100
С	4.96789400	-5.68612600	-0.95888700
С	6.84949800	-4.12674700	-0.42858200
Н	5.84953400	-4.42652400	2.15624300
Н	4.49991500	-5.49544100	1.75525300
Н	6.16776000	-6.02074900	1.46122600
Н	4.93558700	-5.34313100	-1.99820500
Н	5.66621700	-6.52790100	-0.91123300
Н	3.97586800	-6.06556600	-0.69289400
Н	7.53862300	-4.97885200	-0.41652000
Н	6.84042800	-3.71159200	-1.44167800

Н	7.25412300	-3.36217000	0.24110000
С	-8.64552200	3.22308600	-0.04793500
Н	-7.95314400	4.06647800	-0.11012800
Н	-9.25848500	3.35884200	0.85066900
Н	-9.70258800	0.70799200	0.10409200
Н	-9.32148200	3.28042100	-0.90901600

PQ-TPA

Zero-point correction=	0.648318 (Hartree/Particle)
Thermal correction to Energy=	0.683549
Thermal correction to Enthalpy=	0.684493
Thermal correction to Gibbs Free Ene	rgy= 0.578283
Sum of electronic and zero-point Ener	rgies= -1595.915399
Sum of electronic and thermal Energie	es= -1595.880168
Sum of electronic and thermal Enthal	pies= -1595.879224
Sum of electronic and thermal Free En	nergies= -1595.985433

С	-8.78873800	1.42496700	0.08541800
С	-7.98242300	2.57123600	0.00948100
С	-6.60392800	2.44429700	-0.04256200
С	-5.98816300	1.17617300	-0.02529100
С	-6.82057500	0.03097500	0.04393300
С	-8.21423500	0.16041100	0.10317700
Ν	-4.60949600	1.11241400	-0.04986900
С	-4.02066800	-0.06118300	-0.01964500
С	-4.76978000	-1.29252200	-0.01750900
Ν	-6.17209200	-1.20771100	0.03315500

С	-2.53907800	-0.07085000	-0.01300800
С	-1.78607100	-1.03302700	0.67958100
С	-0.39671700	-0.98775100	0.69526700
С	0.29586400	0.01696400	-0.00221700
С	-0.45416000	0.98855400	-0.69202300
С	-1.84066000	0.94923700	-0.68167100
N	1.70891200	0.05337600	-0.00610400
С	2.39834600	1.29924000	0.00363300
С	2.46069500	-1.15555600	-0.01018800
С	3.58184900	-1.30428100	0.82034600
С	4.31761900	-2.48393200	0.80554500
С	3.97073100	-3.57098600	-0.01529000
С	2.84648500	-3.40614000	-0.83556500
С	2.10867100	-2.22251600	-0.84532500
С	3.50871600	1.50778300	-0.82839900
С	4.18622300	2.72159500	-0.80709400
С	3.78818000	3.78487700	0.02175800
С	2.67421300	3.56076900	0.84187600
С	1.99502200	2.34233500	0.84541900
С	-4.44564500	-2.64575700	-0.10200300
С	-5.65227400	-3.37416700	-0.08637800
С	-6.69870700	-2.47244200	-0.00183100
Н	-8.43923500	3.55588500	-0.00420400
Н	-5.95244600	3.31036800	-0.09337300
Н	-8.84498900	-0.71977400	0.16275100
Н	-2.29099900	-1.79834600	1.25835500
Н	0.16067500	-1.72648200	1.26025000
Н	0.06059000	1.77048900	-1.23921100
Н	-2.41128000	1.70573100	-1.20899400
Н	3.87220000	-0.49053500	1.47666900

Н	5.17727600	-2.55889700	1.46505600
Н	2.53363100	-4.20456400	-1.49842400
Н	1.25103300	-2.12586600	-1.50287700
Н	3.83665000	0.71319500	-1.49053600
Н	5.04030600	2.84264900	-1.46689500
Н	2.32352700	4.33911700	1.50961000
Н	1.14352800	2.20036100	1.50272900
Н	-3.44986900	-3.04973400	-0.19085200
Н	-5.75839400	-4.44866600	-0.13818900
Н	-7.76306500	-2.64155800	0.01900400
С	4.56191600	5.11508900	-0.00376400
С	4.50230400	5.71762500	-1.42775500
С	3.97998500	6.14881300	0.97889500
С	6.03890700	4.86287200	0.38224500
Н	4.94054000	5.04672300	-2.17253800
Н	3.46752200	5.91576400	-1.72537300
Н	5.05445700	6.66353900	-1.46582000
Н	4.01974400	5.79454700	2.01417800
Н	4.56014800	7.07562500	0.92542200
Н	2.94031500	6.39682300	0.74169500
Н	6.60518000	5.80074700	0.35762000
Н	6.11407200	4.44677000	1.39215700
Н	6.52556600	4.16307800	-0.30349000
С	4.80546300	-4.86334800	0.01975400
С	4.77028000	-5.45884000	1.44749800
С	4.27409400	-5.92879900	-0.95783000
С	6.27017700	-4.54549000	-0.36455900
Н	5.17505900	-4.76317300	2.18848100
Н	3.74494300	-5.70238100	1.74418200
Н	5.36522700	-6.37810700	1.49354600

Н	4.29739500	-5.57843300	-1.99495600
Н	4.89761200	-6.82668000	-0.89926100
Н	3.24723200	-6.22495400	-0.71982400
Н	6.87983500	-5.45554100	-0.33220400
Н	6.32867200	-4.13327900	-1.37718400
Н	6.72172500	-3.81901100	0.31746700
Н	-9.86915200	1.52066900	0.13124200

CF₃-PQ-TPA

Zero-point correction=	0.653176 (Hartree/Particle)
Thermal correction to Energy=	0.692038
Thermal correction to Enthalpy=	0.692982
Thermal correction to Gibbs Free Ene	rgy= 0.577680
Sum of electronic and zero-point Ener	rgies= -1932.946626
Sum of electronic and thermal Energie	es= -1932.907764
Sum of electronic and thermal Enthalp	pies= -1932.906820
Sum of electronic and thermal Free En	nergies= -1933.022122

С	7.92646400 -0.61324200 -0.12901800
С	7.35709800 0.66756200 -0.03168900
С	5.97995800 0.81611100 0.02901700
С	5.12966400 -0.30550000 0.00110900
С	5.72136000 -1.59094700 -0.08710900
С	7.11354600 -1.73563900 -0.15799900
Ν	3.76745800 -0.09526400 0.03215300
С	2.95733100 -1.12957400 -0.00467400
С	3.45117800 -2.48414600 -0.02172000
Ν	4.84428000 -2.67600000 -0.08517700
С	1.50493500 -0.84554600 -0.00337500

С	0.56947600	-1.64343100	-0.68319900
С	-0.78245700	-1.32185000	-0.69194200
С	-1.25560500	-0.19108200	-0.00279100
С	-0.32080500	0.61649100	0.67415800
С	1.02885200	0.29969700	0.65907600
N	-2.62963800	0.13120700	0.00410100
С	-3.05112400	1.49243400	-0.00528000
С	-3.61406300	-0.89785400	0.01062800
С	-4.74155000	-0.81493700	-0.82030700
С	-5.70938200	-1.81288400	-0.79527600
С	-5.59777400	-2.94134900	0.03543100
С	-4.46118000	-3.01150900	0.85236100
С	-3.49130700	-2.00914400	0.85287200
С	-4.08367000	1.92693300	0.83908400
С	-4.50326400	3.25231200	0.81292700
С	-3.91170500	4.20635100	-0.03337100
С	-2.87587100	3.75591600	-0.86290700
С	-2.45623400	2.42574700	-0.86153200
С	2.87049400	-3.74771800	0.05584100
С	3.91113300	-4.69911300	0.02243800
С	5.11283200	-4.02058300	-0.06524400
Н	5.51914000	1.79491700	0.08967000
Н	7.56046600	-2.71994900	-0.23901400
Н	0.90619100	-2.49702800	-1.26058300
Н	-1.47959000	-1.93901200	-1.24752900
Н	-0.66454000	1.49095600	1.21522500
Н	1.74190600	0.93087600	1.17766100
Н	-4.85514300	0.03689400	-1.48263300
Н	-6.56737200	-1.71031100	-1.45316600
Н	-4.32164900	-3.85256400	1.52168100

Н	-2.63234800	-2.08904800	1.51102700
Н	-4.55548600	1.21968600	1.51328700
Н	-5.30531900	3.54841800	1.48280600
Н	-2.38331800	4.44160400	-1.54253700
Н	-1.66016200	2.10999600	-1.52788500
Н	1.81607900	-3.95075600	0.15241000
Н	3.80417500	-5.77383300	0.06498400
Н	6.12291500	-4.39562200	-0.09684100
С	-4.40664100	5.66351700	-0.02180300
С	-4.22783100	6.25864300	1.39513000
С	-3.63332000	6.55026300	-1.01582300
С	-5.90497900	5.70120900	-0.40617700
Н	-4.78645400	5.69418100	2.14754400
Н	-3.17358700	6.25583800	1.69048200
Н	-4.58569900	7.29401000	1.42216600
Н	-3.74461500	6.19953000	-2.04703100
Н	-4.01757200	7.57441600	-0.97279900
Н	-2.56463200	6.58920000	-0.78108500
Н	-6.27537500	6.73252800	-0.39971400
Н	-6.06234500	5.29037600	-1.40882200
Н	-6.51846100	5.12322400	0.29129600
С	-6.69352700	-4.02202300	0.02206500
С	-6.82118100	-4.61173400	-1.40272900
С	-6.38682500	-5.17751100	0.99294700
С	-8.04423800	-3.39105900	0.43609600
Н	-7.08281600	-3.84598500	-2.13900100
Н	-5.88087100	-5.07345500	-1.72109600
Н	-7.60302300	-5.37920100	-1.42939800
Н	-6.31652200	-4.83194500	2.02949400
Н	-7.19020000	-5.91964100	0.94726300

Н	-5.45199700	-5.68736700	0.73798800
Н	-8.83776300	-4.14691200	0.42735500
Н	-7.98639500	-2.97063600	1.44536200
Н	-8.34344200	-2.58736900	-0.24318500
С	8.25258500	1.87145100	0.06399900
Н	9.00321600	-0.72232500	-0.19054000
F	9.39077700	1.70667500	-0.64999500
F	8.62969200	2.11551600	1.34230700
F	7.64883000	2.99215900	-0.38671900

CH₃-PQ-TPA⁺⁺

Zero-point correction=	0.676271 (Hartree/Particle)
Thermal correction to Energy=	0.713301
Thermal correction to Enthalpy=	0.714245
Thermal correction to Gibbs Free Ene	orgy= 0.604046
Sum of electronic and zero-point Ener	rgies= -1634.992319
Sum of electronic and thermal Energie	es= -1634.955289
Sum of electronic and thermal Enthal	pies= -1634.954345
Sum of electronic and thermal Free En	nergies= -1635.064543

С	-8.54580000	0.73192600	0.12024400
С	-7.82005700	1.93312500	-0.07236700
С	-6.44276900	1.84910000	-0.17567300
С	-5.76299300	0.60974500	-0.09878200
С	-6.52669800	-0.57737700	0.08458800
С	-7.92012700	-0.50238600	0.19835900
N	-4.39849800	0.60900700	-0.17980800

С	-3.73998600	-0.53473200	-0.08003600
С	-4.41428600	-1.79690800	0.01352000
Ν	-5.81819600	-1.77487200	0.11723000
С	-2.27251500	-0.41746800	-0.05845700
С	-1.44147800	-1.34577200	0.60486200
С	-0.06755000	-1.19126500	0.62402500
С	0.53466400	-0.08744800	-0.02349900
С	-0.29273000	0.86176800	-0.67018600
С	-1.66249600	0.69751600	-0.67779600
N	1.92433000	0.06894300	-0.01007000
С	2.50495900	1.36617700	0.00677800
С	2.77886200	-1.06573700	-0.01325500
С	3.92593400	-1.08938400	0.80071400
С	4.75862800	-2.19706400	0.78508300
С	4.50115400	-3.31637100	-0.03372800
С	3.35229500	-3.26676000	-0.84133000
С	2.50072700	-2.16702300	-0.83818800
С	3.62442100	1.64944700	-0.79608100
С	4.18865200	2.91512200	-0.76879700
С	3.68031000	3.94391700	0.05111500
С	2.56540300	3.63412500	0.84857000
С	1.98099500	2.37201300	0.83351800
С	-4.03062500	-3.13915300	-0.01157900
С	-5.19882800	-3.91982300	0.09764900
С	-6.28227900	-3.06486000	0.17668200
Н	-5.83353500	2.73641700	-0.31363900
Н	-8.51267200	-1.39794900	0.34522900
Н	-1.88524200	-2.16413200	1.15864700
Н	0.55021600	-1.88970800	1.17612100
Н	0.15747500	1.69991500	-1.18885600

Н	-2.29736200	1.41584700	-1.18198200
Н	4.14195200	-0.25065200	1.45318100
Н	5.62725000	-2.19478400	1.43472300
Н	3.11704900	-4.09171000	-1.50225800
Н	1.63741200	-2.14630900	-1.49443000
Н	4.02708200	0.88365200	-1.44985500
Н	5.04117200	3.11051000	-1.41022600
Н	2.14576100	4.38225700	1.50955900
Н	1.13712300	2.15587700	1.47981400
Н	-3.02585200	-3.51092300	-0.13562100
Н	-5.25440000	-4.99879100	0.10592800
Н	-7.33517000	-3.28336500	0.24999800
С	4.34620500	5.32764400	0.04679700
С	4.29141700	5.91291900	-1.38614200
С	3.64953800	6.31485000	1.00152700
С	5.82353800	5.18157000	0.48744400
Н	4.81524700	5.28199800	-2.11000100
Н	3.25758800	6.03017300	-1.72610300
Н	4.76668000	6.89870500	-1.40268500
Н	3.68488100	5.97439700	2.04151600
Н	4.15700900	7.28259300	0.95855400
Н	2.60310300	6.48286300	0.72672000
Н	6.31162300	6.16129300	0.48207700
Н	5.89468900	4.77352900	1.50060000
Н	6.39031100	4.52696600	-0.18094900
С	5.46186800	-4.51395000	-0.01981200
С	5.53165100	-5.09317800	1.41493200
С	5.01212000	-5.63524300	-0.97490700
С	6.87067300	-4.03778700	-0.45192000
Н	5.88991300	-4.35689400	2.14014500

Н	4.54988600	-5.44483800	1.74756800
Н	6.22097800	-5.94300100	1.43953300
Н	4.97587500	-5.29850300	-2.01608700
Н	5.72426700	-6.46365900	-0.92518200
Н	4.02880100	-6.03393500	-0.70475800
Н	7.56751200	-4.88181000	-0.44440100
Н	6.85397300	-3.62234000	-1.46447500
Н	7.27063000	-3.27315000	0.22023300
С	-8.54612500	3.25249900	-0.15345700
Н	-7.85154500	4.08191600	-0.30395900
Н	-9.11239000	3.44844800	0.76371900
Н	-9.62758500	0.77696700	0.20935900
Н	-9.26317200	3.25793900	-0.98171800

PQ-TPA++

Zero-point correction=	0.648998 (Hartree/Particle)
Thermal correction to Energy=	0.684123
Thermal correction to Enthalpy=	0.685067
Thermal correction to Gibbs Free Ene	ergy= 0.579283
Sum of electronic and zero-point Ener	rgies= -1595.697703
Sum of electronic and thermal Energie	es= -1595.662578
Sum of electronic and thermal Enthal	pies= -1595.661634
Sum of electronic and thermal Free En	nergies= -1595.767419

Cartesian coordinates

С	-8.71353000	1.46574000	0.10562900
С	-7.89139100	2.59433400	-0.07397300
С	-6.52327900	2.43840600	-0.17507600
С	-5.93448200	1.15359800	-0.10552000

S29

С	-6.78515900	0.02379100	0.06602900
С	-8.17077300	0.18950000	0.17607800
N	-4.57197600	1.05527700	-0.18197100
С	-3.99926400	-0.13258400	-0.08773600
С	-4.76269100	-1.34372700	-0.00330700
N	-6.16237900	-1.22208500	0.09304900
С	-2.52598400	-0.12306200	-0.06405500
С	-1.76772700	-1.10785000	0.60416400
С	-0.38586200	-1.05576200	0.62466900
С	0.29639700	-0.00265500	-0.02715700
С	-0.45661300	1.00278300	-0.67900300
С	-1.83517100	0.94110200	-0.68707800
N	1.69524000	0.04904300	-0.01339900
С	2.37110300	1.29801300	0.00596400
С	2.45913800	-1.14795000	-0.01790200
С	3.60133400	-1.26168300	0.79575800
С	4.33950400	-2.43442400	0.78545200
С	3.98998300	-3.53259300	-0.02797800
С	2.85110600	-3.39079900	-0.83903100
С	2.09283900	-2.22508000	-0.84073300
С	3.51790900	1.49295800	-0.78537700
С	4.17162300	2.71454900	-0.76056700
С	3.72957900	3.78413700	0.04574300
С	2.58745700	3.56158800	0.83407500
С	1.91333400	2.34537000	0.82129300
С	-4.47498400	-2.70903200	-0.03490000
С	-5.69633700	-3.40527200	0.06226600
С	-6.71679000	-2.47597700	0.14087800
Н	-8.33484300	3.58275000	-0.12761900
Н	-5.85787700	3.28503400	-0.30365900

Н	-8.82052000	-0.66679900	0.31424400
Н	-2.27235300	-1.88905500	1.15943900
Н	0.17782200	-1.79567700	1.18051900
Н	0.05538700	1.80232500	-1.20123100
Н	-2.41466100	1.70263800	-1.19458500
Н	3.88469500	-0.44170300	1.44630300
Н	5.20465900	-2.50188900	1.43603900
Н	2.55027500	-4.19638500	-1.49698200
Н	1.23437400	-2.13533900	-1.49743600
Н	3.87041700	0.69578700	-1.43049700
Н	5.04269900	2.84324900	-1.39368800
Н	2.21739300	4.34344300	1.48538800
Н	1.04962200	2.19551200	1.45994000
Н	-3.49816100	-3.15013400	-0.15497000
Н	-5.82866500	-4.47757500	0.06304300
Н	-7.78282400	-2.62066600	0.20656500
С	4.48992300	5.11806000	0.03465800
С	4.48184300	5.69299100	-1.40360900
С	3.85897300	6.15958200	0.97764500
С	5.95186000	4.87424600	0.48388100
Н	4.96593600	5.02207700	-2.11915700
Н	3.45993700	5.87626600	-1.75026400
Н	5.02223400	6.64453900	-1.42558900
Н	3.86291600	5.82558800	2.02034300
Н	4.43475700	7.08807800	0.93143300
Н	2.82916100	6.40001500	0.69404200
Н	6.50605000	5.81791200	0.47155200
Н	5.99073400	4.47246500	1.50127800
Н	6.47514500	4.17576800	-0.17546400
С	4.83943000	-4.81107200	0.00189600

С	4.82864300	-5.38994500	1.43862800
С	4.30798800	-5.88950000	-0.96099100
С	6.29388300	-4.46698300	-0.40381100
Н	5.24244500	-4.68846400	2.16880100
Н	3.81206000	-5.64525600	1.75402900
Н	5.43321400	-6.30155600	1.47644700
Н	4.31592400	-5.55080200	-2.00216900
Н	4.94566300	-6.77586600	-0.90216900
Н	3.29037700	-6.20282800	-0.70578600
Н	6.91118400	-5.37029200	-0.37555500
Н	6.33549900	-4.06105100	-1.41948000
Н	6.74852900	-3.73587300	0.27099100
Н	-9.78827000	1.58933700	0.19073800

CF₃-PQ-TPQ^{++.}

Zero-point correction=	0.653870 (Hartree/Particle)
Thermal correction to Energy=	0.692586
Thermal correction to Enthalpy=	0.693531
Thermal correction to Gibbs Free Ene	rgy= 0.579268
Sum of electronic and zero-point Ener	rgies= -1932.724336
Sum of electronic and thermal Energie	es= -1932.685619
Sum of electronic and thermal Enthalp	bies= -1932.684675
Sum of electronic and thermal Free En	nergies= -1932.798938

С	7.85618300	-0.58650800	-0.18567000
С	7.27133200	0.67622400	0.03630800
С	5.90014000	0.79469300	0.14955600

С	5.07047800	-0.34381200	0.05154200
С	5.67656200	-1.61220800	-0.15906100
С	7.06880000	-1.72167900	-0.28292200
Ν	3.71387300	-0.16801200	0.14075900
С	2.91826600	-1.21394000	0.02690400
С	3.42267800	-2.55071300	-0.10258100
N	4.81992700	-2.70776000	-0.21461500
С	1.47265400	-0.91025800	0.02934700
С	0.52712500	-1.69860500	-0.65830900
С	-0.81620700	-1.36447800	-0.66133600
С	-1.26121700	-0.21320900	0.02496400
С	-0.31838400	0.59438100	0.70144400
С	1.01869100	0.24948000	0.69556500
Ν	-2.62184500	0.13288300	0.01991000
С	-3.01246600	1.49524300	-0.01342400
С	-3.61625400	-0.87660500	0.04159200
С	-4.77637700	-0.74804000	-0.74623000
С	-5.74268000	-1.73987600	-0.71439300
С	-5.61167400	-2.88822900	0.09535900
С	-4.44683700	-2.99152200	0.87615700
С	-3.46166200	-2.01144500	0.85587800
С	-4.09968400	1.94144900	0.76240400
С	-4.47381500	3.27439300	0.71939200
С	-3.80363900	4.21495300	-0.09180200
С	-2.72464400	3.74385800	-0.86064100
С	-2.32698500	2.41278300	-0.82760500
С	2.86938500	-3.83035300	-0.10875400
С	3.92686000	-4.75277500	-0.24282200
С	5.11204400	-4.04444900	-0.30752100
Н	5.42715300	1.75612800	0.30710500

Н	7.53468000	-2.68449700	-0.45592900
Н	0.85822500	-2.54901600	-1.24158000
Н	-1.52317700	-1.95635600	-1.23096900
Н	-0.65443300	1.46561900	1.25151800
Н	1.74448000	0.85966600	1.21917500
Н	-4.89563900	0.11266700	-1.39479500
Н	-6.61744900	-1.62458000	-1.34495200
Н	-4.30562800	-3.84386800	1.52877100
Н	-2.58837700	-2.10468600	1.49205400
Н	-4.62112200	1.24676500	1.41145100
Н	-5.30170200	3.59555400	1.34207600
Н	-2.18733900	4.42080400	-1.51273500
Н	-1.50791900	2.07441700	-1.45261900
Н	1.82505400	-4.07230300	0.00929200
Н	3.84216600	-5.82932600	-0.27814600
Н	6.12681900	-4.39763500	-0.39256200
С	-4.26189400	5.67965000	-0.10790700
С	-4.13490900	6.26416500	1.32119400
С	-3.42115200	6.54560400	-1.06453200
С	-5.74150000	5.74405900	-0.56141400
Н	-4.74703500	5.71954300	2.04577400
Н	-3.09710100	6.23857500	1.66807000
Н	-4.46680500	7.30695000	1.32535600
Н	-3.49212500	6.20002000	-2.10099800
Н	-3.78706400	7.57570600	-1.03888400
Н	-2.36485300	6.56823800	-0.77749300
Н	-6.08054500	6.78455300	-0.57208300
Н	-5.86419200	5.33872400	-1.57074900
Н	-6.40367000	5.18868400	0.10906000
С	-6.71487700	-3.95547300	0.09752700

С	-6.87247300	-4.52296200	-1.33534800
С	-6.39883500	-5.12258600	1.05099500
С	-8.04851100	-3.30663400	0.54395500
Н	-7.14998200	-3.74978400	-2.05766500
Н	-5.94481700	-4.99077300	-1.67987200
Н	-7.65928000	-5.28362900	-1.34749900
Н	-6.30391600	-4.79045400	2.08993800
Н	-7.21338800	-5.85112900	1.01547000
Н	-5.48018000	-5.64701500	0.76851500
Н	-8.84369700	-4.05863000	0.54601700
Н	-7.96925900	-2.89586500	1.55537900
Н	-8.36026500	-2.49971400	-0.12551300
С	8.16729000	1.88027400	0.17970800
Н	8.93281200	-0.66854800	-0.28733600
F	9.10520500	1.90673800	-0.79081900
F	8.82154900	1.86088200	1.36090100
F	7.47380300	3.03419300	0.11768300

Reference

- [1] O. V. Dolomanov, L. J. Bourhis, R. I. Gildea, J. A. Howard and H. Puschmann, Appl. cryst. 2009, 42, 339-341.
- [2] R. A. Pashameah, M. Alshareef, A. Alharbi, A. Alsoliemy, H. M. Abumelha, F. A. Saad and N. M.
 El Metwaly, *Lumin.*, 2022, 37(10), 1751-1759.

[3] K. Zhang, Z. Zhou, D. Liu, Y. Chen, S. Zhang, J. Pan, X. F. Qiao, D. Ma, S. J. Su, W. G. Zhu, and Y. Liu, *Angew, Chem. Int. Ed.*, 2024, **63(35)**, e202407502.

[4] R. Song, G. Li, Y. Zhang, B. Rao, S. Xiong and G. He, Chem. Eng. J., 2021, 422, 130057.

[5] S. Debnath, J. Park, V. Hugar, R. K. Canjeevaram Balasubramanyam, R. K., J. Oh, W. Kim and S. Patil, J. Phys. Chem. Lett. 2025, 16, 123-130.