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Supporting Information Available

Experimental and computational methods

Computational details

Calculations were conducted using the Vienna Ab initio Simulation Package (VASP) version
6.3.2, which utilizes the projector-augmented wave (PAW) method. A plane wave energy
cut-off of 400 eV was employed, and the wavefunction was optimized to an accuracy of 1076
eV. Atomic coordinates were relaxed until the forces reached below 5x 102 eV /A. Gaussian-
type finite-temperature smearing with a width of 0.01 eV was applied. DFT-D3 dispersion
correction was utilized to account for long-range interactions.®” The atomic and cell coor-
dinates were relaxed using the Perdew, Burke, and Ernzerhof (PBE) exchange—correlation
functional within the generalized gradient approximation (GGA).® Accurate final energy re-
sults were obtained by performing single-point calculations on the PBE-optimized structures
using the Heyd—Scuseria—Ernzerhof (HSE06) hybrid functional, which includes 25% exact ex-
change and a screening factor of 0.2 A='.9 The HSE06 functional was found to provide a good
description of the electronic properties of PCNs. For the monolayer, a vacuum layer with a
thickness of 20 A was added to avoid interactions between the periodic images, and dipole
correction was applied. The Brillouin zone integration for periodic models was performed
using Gamma-centered £ grids. The excitonic effects were calculated including the frequency-
dependent dielectric functions and the oscillator strength by the time-dependent Hartree—
Fock (TDHF) implanted in VASP.1%!! The details are described in the Supporting Informa-
tion and all data used in this study is available via Zenodo.'?(DOI:10.5281/zenodo.10844460)

Sample preparation and diffuse reflectance spectroscopy

The conventional yellow coloured polymeric carbon nitride was prepared by thermal poly-

condensation of 30 g melamine at 530 °C for 4 h in a lid-covered crucible. Diffuse reflectance



UV-vis spectra of solid was recorded using a Shimadzu UV2600 UV-vis spectrophotometer.

Supplementary methods

The optical excitation energy is obtained from the transition matrix within the adiabatic

linear response theory: '3
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where F is the excitation eigenvalues, X, and Y, are corresponding wavefunctions, A and
— A* are the resonant transition and antiresonant transitions from occupied orbitals to unoc-
cupied orbitals, and B and —B* are the coupling between the excitations and de-excitations,
respectively. In the HSE@Casida formulation, the matrices A: AU = (5P —lSEy)§, /5.0 +
(V' |V o) = (V| fre|c'v) , and the matrices B:BY.S = (vv/|V|ed) — (00| fre|c'c) , where the oc-
cupied v, v" and unoccupied ¢, ¢ states, include that interactions between electrons and holes
are described by an effective nonlocal frequency-dependent kernel fy..'* The Tamm-Dancoff
approximation (TDA) neglects the off-diagonal coupling elements. Hence, the Eq. (1) re-
duces to AX, = F,X,.' The macroscopic dielectric matrix €);(q,w) is obtained by an inver-
sion of the full microscopic dielectric matrix in giving long—wavelength limit q — 0. It gives

em(q,w) = (eaé(q,w))_l. Exploiting the TDA approximation, the solution of HSEQCasida

(Es and X;) can be used to obtain the macroscopic dielectric function:
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where p is the momentum operator with Cartesian coordinates «, m is z-component quantum

number, {2 is the lattice volume, and 7 is an infinitesimal number related to the exciton



lifetime. %17 The oscillator strength f2 of state s is given by

(ckm|pq|vkm)
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The imaginary part of the dielectric function for 3x3 Cartesian tensor is given by
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, where the e, is unit vectors for cartesian coordinates, wy is k-point weights, and u is the
Bloch vector, respectively. The real part of the dielectric tensor ex*"**(w) is obtained by
Kramers—Kronig relations
2 0 Eimg’aa(a}/)w/
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From the real and the imaginary parts of dielectric functions, the absorption coefficient is

calculated. '®



Supplementary data
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Figure S1: The band structure (left) and its orbital projection (right) of (a) melon-2D,
(b) PHI-2D, (c¢) pg—CN-2D, and (d) cg—CN-2D. The projection is performed on s, p orbitals
corresponding to carbon and nitrogen atoms. The trivial contribution of hydrogen is omitted.

Fermi energy is referenced to 0 eV.
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Table S1: The calculated bandgap (HSE06) of PCN structures.

Structure bandgap (eV) Structure bandgap (eV)
melon-2D  3.68 melon-3D  3.12
PHI-2D 3.32 PHI-3D 3.18
cg-2D 2.99 cg-3D 2.95
pe-2D  2.79 pe-3D  2.35
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Figure S2: The depiction of electron density in (a) melon, (b) PHI, (c) cg, and (d) pg 2D
structures corresponding to the respective energy level at I'.
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Figure S3: The calculated imaginary part of the dielectric function for pg-2D structure using
TD@Casida (black), GW@BSE (red)'?, and GW@QIP' (blue) calculations. The scissor
correction is applied based on the brightest state, which is commonly located around 4 eV.
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