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Experimental and computational methods

Computational details

Calculations were conducted using the Vienna Ab initio Simulation Package (VASP) version

6.3.2, which utilizes the projector-augmented wave (PAW) method.1–5 A plane wave energy

cut-off of 400 eV was employed, and the wavefunction was optimized to an accuracy of 10−6

eV. Atomic coordinates were relaxed until the forces reached below 5×10−2 eV/Å. Gaussian-

type finite-temperature smearing with a width of 0.01 eV was applied. DFT-D3 dispersion

correction was utilized to account for long-range interactions.6,7 The atomic and cell coor-

dinates were relaxed using the Perdew, Burke, and Ernzerhof (PBE) exchange–correlation

functional within the generalized gradient approximation (GGA).8 Accurate final energy re-

sults were obtained by performing single-point calculations on the PBE-optimized structures

using the Heyd–Scuseria–Ernzerhof (HSE06) hybrid functional, which includes 25% exact ex-

change and a screening factor of 0.2 Å−1.9 The HSE06 functional was found to provide a good

description of the electronic properties of PCNs. For the monolayer, a vacuum layer with a

thickness of 20 Å was added to avoid interactions between the periodic images, and dipole

correction was applied. The Brillouin zone integration for periodic models was performed

using Gamma-centered k grids. The excitonic effects were calculated including the frequency-

dependent dielectric functions and the oscillator strength by the time-dependent Hartree–

Fock (TDHF) implanted in VASP.10,11 The details are described in the Supporting Informa-

tion and all data used in this study is available via Zenodo.12(DOI:10.5281/zenodo.10844460)

Sample preparation and diffuse reflectance spectroscopy

The conventional yellow coloured polymeric carbon nitride was prepared by thermal poly-

condensation of 30 g melamine at 530 ◦C for 4 h in a lid-covered crucible. Diffuse reflectance
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UV–vis spectra of solid was recorded using a Shimadzu UV2600 UV–vis spectrophotometer.

Supplementary methods

The optical excitation energy is obtained from the transition matrix within the adiabatic

linear response theory:13  A B

−B∗ −A∗


Xs

Ys

 = Es

Xs

Ys

 (1)

where Es is the excitation eigenvalues, Xs and Ys are corresponding wavefunctions, A and

−A∗ are the resonant transition and antiresonant transitions from occupied orbitals to unoc-

cupied orbitals, and B and −B∗ are the coupling between the excitations and de-excitations,

respectively. In the HSE@Casida formulation, the matrices A: Av′c′
vc = (εHSE

v −εHSE
c v)δvv′δcc′+

⟨cv′|V |vc′⟩−⟨cv′|fxc|c′v⟩ , and the matrices B:Bv′c′
vc = ⟨vv′|V |cc′⟩−⟨vv′|fxc|c′c⟩ , where the oc-

cupied v, v′ and unoccupied c, c′ states, include that interactions between electrons and holes

are described by an effective nonlocal frequency-dependent kernel fxc.
14 The Tamm-Dancoff

approximation (TDA) neglects the off-diagonal coupling elements. Hence, the Eq. (1) re-

duces to AXs = EsXs.
15 The macroscopic dielectric matrix ϵM(q, ω) is obtained by an inver-

sion of the full microscopic dielectric matrix in giving long–wavelength limit q → 0. It gives

ϵM(q, ω) = (ϵ−1
0,0(q, ω))

−1. Exploiting the TDA approximation, the solution of HSE@Casida

(Es and Xs) can be used to obtain the macroscopic dielectric function:

ϵααM (q, ω) = 1+
2

Ω

e2h̄2

ϵ0m2
0

∑
s

∣∣∣∣∣ ∑
c,v,k,m

⟨ckm|pα|vkm⟩
ϵmck − ϵmvk

∗

Xc,v,k
s

∣∣∣∣∣
2

×
∑
β=±1

1

Es − βh̄(ω + iη)

 , (2)

where p is the momentum operator with Cartesian coordinates α, m is z-component quantum

number, Ω is the lattice volume, and η is an infinitesimal number related to the exciton
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lifetime.16,17 The oscillator strength f s
α of state s is given by

f s
α ∝ Es

∣∣∣∣∣ ∑
c,v,k,m

⟨ckm|pα|vkm⟩
ϵmck − ϵmvk

∗

Xc,v,k
s

∣∣∣∣∣
2

. (3)

The imaginary part of the dielectric function for 3×3 Cartesian tensor is given by

ϵ2,ααM (ω) =
4π2e2

Ω
lim
q→0

1

q2

∑
c,v,k,m

2wkδ(εck+q − εvk − ω)× ⟨uck+qeα|uvk⟩⟨uvk|uck+qeα⟩. (4)

, where the eα is unit vectors for cartesian coordinates, wk is k -point weights, and u is the

Bloch vector, respectively. The real part of the dielectric tensor ϵreal,ααM (ω) is obtained by

Kramers–Kronig relations

ϵreal,ααM (ω) = 1 +
2

π
P

∫ ∞

0

ϵimg,αα
M (ω′)ω′

ω′2 − ω2
dω . (5)

From the real and the imaginary parts of dielectric functions, the absorption coefficient is

calculated.18
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Supplementary data
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Figure S1: The band structure (left) and its orbital projection (right) of (a) melon-2D,
(b) PHI-2D, (c) pg–CN-2D, and (d) cg–CN-2D. The projection is performed on s, p orbitals
corresponding to carbon and nitrogen atoms. The trivial contribution of hydrogen is omitted.
Fermi energy is referenced to 0 eV.

Table S1: The calculated bandgap (HSE06) of PCN structures.

Structure bandgap (eV) Structure bandgap (eV)

melon-2D 3.68 melon-3D 3.12
PHI-2D 3.32 PHI-3D 3.18
cg-2D 2.99 cg-3D 2.95
pg-2D 2.79 pg-3D 2.35
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Figure S2: The depiction of electron density in (a) melon, (b) PHI, (c) cg, and (d) pg 2D
structures corresponding to the respective energy level at Γ.
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0.36 eV
TDHF@Casida
GW@BSE Wei et al.
GW@IP Wei et al.

Figure S3: The calculated imaginary part of the dielectric function for pg-2D structure using
TD@Casida (black), GW@BSE (red)19, and GW@IP19 (blue) calculations. The scissor
correction is applied based on the brightest state, which is commonly located around 4 eV.
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