Supporting Information for Enhancing Triplet Harvesting in Inverted Singlet-Triplet Gap Molecules through Mechanistic Understanding

Laure de Thieulloy, Leonardo Evaristo de Sousa, and Piotr de Silva*

Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej 301, 2800 Kongens Lyngby, Denmark

E-mail: pdes@dtu.dk

Figure S1: Highest Occupied Natural Transition Orbitals (HONTO) and Lowest Unoccupied Natural Transition Orbitals (LUNTO) of molecules 1, 2, 3, and 4 at their equilibrium ground state geometry.

Figure S2: Distribution of oscillator strengths for molecules 1 to 4 in the S_1 ensemble. Vertical dashed lines show the ensemble average whereas solid vertical lines show values for optimized structures.

Figure S3: Natural transition orbitals of molecules 1, 2, 3, and 4 at a) S_1 equilibrium geometries, b) Geometries with the highest oscillator strength in the S_1 ensemble.

Figure S4: Normalized absorption spectra of molecules 1 to 4. The inset displays the absorption spectrum corresponding to the first singlet excited state, $S_0 \rightarrow S_1$, computed using EOM-CCSD/cc-pVDZ in toluene.

Transition	$k_{i ightarrow f} \; [s^{-1}]$	<i>φ</i> [(%)]	$\Delta E [eV]$	<SOC $>$ [meV]
	· · · · · · · · · · · · · · · · · · ·	1		
$S_1 \rightarrow S_0$	$(9.0 \pm 0.5) \times 10^4$	99	1.013	-
$S_1 \rightsquigarrow T_1$	$(4.1 \pm 0.4) \times 10^7$	100	-0.021	0.028
$S_1 \rightsquigarrow T_2$	$(3 \pm 3) \times 10^{-59}$	0	1.077	0.094
$T_1 \rightarrow S_0$	$(1.1 \pm 0.8) \times 10^3$	1	1.059	-
$T_1 \rightsquigarrow S_0$	$(5 \pm 5) \times 10^{-49}$	0	1.059	0.383
$T_1 \rightsquigarrow S_1$	$(3.5 \pm 0.3) \times 10^7$	100	0.013	0.029
		2		
$S_1 \rightarrow S_0$	$(8.6 \pm 0.5) \times 10^5$	97	2.426	-
$S_1 \rightsquigarrow T_1$	$(2.2 \pm 0.5) \times 10^7$	96	-0.136	0.033
$S_1 \rightsquigarrow T_2$	$(3 \pm 2) \times 10^{-57}$	0	1.029	0.504
$T_1 \rightarrow S_0$	$(5 \pm 3) \times 10^4$	3	2.564	-
$T_1 \rightsquigarrow S_0$	0 ± 0	0	2.564	0.631
$T_1 \rightsquigarrow S_1$	$(3.5 \pm 0.6) \times 10^7$	100	-0.111	0.036
		3		
$S_1 \to S_0$	$(1.03 \pm 0.05) \times 10^{6}$	93	2.475	-
$S_1 \rightsquigarrow T_1$	$(1.6 \pm 0.4) \times 10^7$	94	-0.147	0.033
$S_1 \rightsquigarrow T_2$	$(2 \pm 2) \times 10^{-6}$	0	1.046	0.586
$T_1 \rightarrow S_0$	$(2 \pm 2) \times 10^5$	7	2.339	-
$T_1 \rightsquigarrow S_0$	$(3 \pm 3) \times 10^{-30}$	0	2.339	0.577
$T_1 \rightsquigarrow S_1$	$(5 \pm 1) \times 10^{7}$	100	-0.114	0.044
		4		
$S_1 \to S_0$	$(7.4 \pm 0.2) \times 10^{6}$	95	2.727	-
$S_1 \rightsquigarrow T_1$	$(5.1 \pm 0.9) \times 10^7$	87	-0.093	0.038
$S_1 \rightsquigarrow T_2$	$(7 \pm 7) \times 10^2$	0	0.925	1.106
$T_1 \to S_0$	$(4 \pm 3) \times 10^5$	5	2.905	-
$T_1 \rightsquigarrow S_0$	0 ± 0	0	2.905	0.666
$T_1 \rightsquigarrow S_1$	$(5.6 \pm 0.5) \times 10^7$	99	0.028	0.040

Table S1: Calculated rate constants of electronic transitions $(k_{i \to f})$, quantum yields (ϕ) , average energy gaps (ΔE), and average spin-orbit couplings ($\langle SOC \rangle$).

Figure S5: Correlation between the nuclear displacement along the i^{th} vibrational mode (R_i) and a) ΔE_{ST} , b) $\langle S_1 | H_{SO} | T_1 \rangle$ (meV), and c) k_{isc} . The black cross corresponds to the parameter for the geometry that contributes the most to k_{ISC} for each system. For each molecule, there is only one mode with significant correlation.

Figure S6: Vibrational mode that has the highest correlation between the amplitude of nuclear displacement and both, ΔE_{ST} and $\langle S_1 | H_{SO} | T_1 \rangle$.

Simulated time-resolved photoluminescence spectra

For simulations of time-resolved spectra, we employ the following kinetic model:

$$\frac{dS_1}{dt} = -(k_F + k_{ISC})S_1 + k_{rISC}T_1$$
(S1)

$$\frac{dT_1}{dt} = k_{ISC}S_1 - (k_P + k_{rISC} + k_{nr})T_1$$
(S2)

$$\frac{dS_{0(em)}}{dt} = k_F S_1 + k_P T_1 \tag{S3}$$

$$\frac{dS_{0(nem)}}{dt} = k_{nr}T_1 \tag{S4}$$

Here, the emissive (em) and non-emissive (nem) pathways to the ground state were separated. In Equation S4, k_F and k_P are the fluorescence and phosphorescence rates and k_{nr} , k_{ISC} and k_{rISC} are the ISC rates from T_1 to S_0 , $S_1 \rightarrow T_1$ and $T_1 \rightarrow S_1$, respectively.

The above equation can be written in a matrix form such that

$$\frac{dP(t)}{dt} = MP(t),\tag{S5}$$

where P(t) is the population vector, a column vector composed of $(S_1, T_1, S_{0(em)}, S_{0(nr)})$. This equation has a solution $P(t) = \exp(Mt)P(0)$, from which S_1 and T_1 population curves can be plotted as a function of time. The time-resolved photoluminescence spectrum is obtained by computing $\frac{dS_{0(em)}(t)}{dt}$.

Figure S7: (a) S_1 energies relative to the minimum of S_1 PES vs. k_{ISC} vs. $\langle S_1 | H_{SO} | T_1 \rangle$ (color scale) and (b) T_1 energies relative to the minimum of T_1 PES vs. k_{rISC} vs vs $\langle T_1 | H_{SO} | S_1 \rangle$ (color scale). Only configurations contributing to the 95% of the rate constant are shown.

Figure S8: Top and side view of the geometries that contribute the most to k_{ISC} (blue) compared to the geometry of the optimized MECP (red) from Ref. 1.

Figure S9: a-d) Time evolution of the S_1 (red) and T_1 (blue) state populations for molecules 1 to 4 under optical excitation (100% S_1 at t = 0) and e-h) the corresponding time-resolved photoluminescence decay (black) and its bi-exponential fit (red) for molecules 1 to 4. ($\epsilon = 2.38$, $n_r = 1.497$, EOM-CCSD/cc-pVDZ)

Figure S10: a-d) Time evolution of the S_1 (red) and T_1 (blue) state populations for molecules 1 to 4 under electrical excitation (25% S_1 at t = 0) and e-h) the corresponding time-resolved photoluminescence decay (black) and its bi-exponential fit (red) for molecules 1 to 4. ($\epsilon = 2.38$, $n_r = 1.497$, EOM-CCSD/cc-pVDZ)

References

 Valverde, D.; Ser, C. T.; Ricci, G.; Jorner, K.; Pollice, R.; Aspuru-Guzik, A.; Olivier, Y. Computational Investigations of the Detailed Mechanism of Reverse Intersystem Crossing in Inverted Singlet–Triplet Gap Molecules. ACS Applied Materials & Interfaces 2024, 16, 66991–67001.