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S1. The operation mechanism of the piezoelectric sensor

Fig. S1 The operation mechanism of the piezoelectric sensor.
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S2. The piezoelectric response of PVDF fabricated via FDM and casting

Fig. S2 Output voltage under different pressures at 1 Hz. (a) FDM printed PVDF. (b) 

Casted PVDF.
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S3. Output performance of PVDF films with different areas

Fig. S3 Output performance of 3D printed PVDF samples with different areas at 50 kPa 

and 1 Hz. (a) Output voltage, (b) Output current.
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S4. The piezoelectric responses with different PDMS thickness

Fig. S4 The output performance of 3D-printed PVDF with different PDMS thickness. 

(a) Output voltage, (b) Output current.
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S5. The stability of 3D-printed PVDF under different temperature and humidity

Fig. S5 The output performance of 3D-printed PVDF samples under different 

temperature. (a) Output voltage, (b) Output current.

Fig. S6 The output performance of 3D-printed PVDF samples under different humidity. 

(a) Output voltage, (b) Output current. 
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S6. The change of output voltage after five months

Fig. S7 The change of output voltage after five months.
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S7. The intelligent system

Fig. S8 The intelligent system consists of a sensor array, a printed circuit board (MCU), 

and a user interface.
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S8. Optimization of CNN architecture parameters

Fig. S9 Optimization of CNN architecture parameters for human posture classification. 

(a) The number of filters, (b) Kernel size, (c) The number of convolutional layers.
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S9. Operation process of the long short-term memory neural network unit 

structure

Fig. S10 Schematic diagram of long short-term memory neural network unit structure.

The LSTM unit structure shown in Figure S8. The LSTM unit structure consists 

of three parts: Forget-gate, Input-gate and Output-gate, which are used to select to retain 

or delete information.

The gate contains a Sigmoid function, which sends a value between (0,1), 

indicating how much input information can be transmitted. The expression of the 

formula is as follows:

                                         (1)
Sigmoid(x) = σ(x) =

1

1 + e - x

Forget-door: Discarding information that is no longer known or unimportant. The 

operation function is as follows :

                                        (2)ft = σ(Wf × [xt,ht - 1] + bf)

where, xt is the reading of the specified time. ht-1 is the hidden information output 

by the previous structural unit. Wf is a weight matrix. bf  is a deviation

Input-gate: Determine what information is added to the cell state. The operation 
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function is as follows:

                                          (3)it = σ(Wi × [xt,ht - 1] + bi

where, Wi is the Input-gate weight matrix ; bi is the Input-gate deviation ; it is output 

for the current moment. The tanh function is used to create a new structural unit Ct :

                                                (4)
tanh (x) =

1 - e - x

1 + e - x

                                     (5)C̃t = tanh(Wc × [xt,ht - 1] + bc)

                                         (6)Ct = ft × Ct - 1 + it × C̃t

Output-gate: Determine the useful information transmission of the current cell 

state. The Output-gate function expression is as follows:

                                    (7)Ot = σ(WO × [xt,ht - 1] + bO)

                                            (8)ht = Ot × tanh(Ct)

The gate structural unit of long short-term memory neural network can adaptively 

regulate the effective information of early learning. This method solves the important 

events with long delay in time series.
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S10. The comparison of accuracy

The main reason for choosing CNN-LSTM algorithm in gait recognition is its ability to 

effectively integrate spatiotemporal features. Gait is essentially a sequence with 

temporal continuity and spatial structure. CNN is expert in extracting spatial features 

of single frame images (such as joint position and limb morphology), while LSTM can 

capture dynamic changes across time steps in gait cycles (such as walking rhythm and 

motion coherence). Therefore, CNN-LSTM can adaptively learn the hierarchical 

expression of spatiotemporal features in gait through end-to-end joint training, which 

has significant advantages in dynamic behaviors modeling.

Table S1. Compare the accuracy for posture recognition by different types of sensors.

Sensor type No. of sensors Network type Accuracy Ref.

triboelectric 2 ANN 98.4% [1]

triboelectric 5 SVM 93.1% [2]

piezoelectric 1 LSTM 92.6% [3]

piezoelectric 2 CNN 94.7% [4]

piezoelectric 1 RF 96.3% [5]

piezoelectric 2 CNN-LSTM 98.7% This work
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S11. Sensor synchronization process

To ensure accurate bilateral gait analysis, each insole-mounted sensor in our system 

was equipped with a MSP430F5529 microcontroller, connected via wired channels for 

reliable data transmission. This architecture allows motion signals to be independently 

collected in real time. The two microcontrollers were initialized with a shared timing 

reference during system startup, ensuring temporal alignment of the data streams. Key 

features such as speed, gait cycles, and center of mass changes were extracted from 

both data streams. Moreover, a specific data fusion algorithm, Kalman filtering, was 

then applied to combine the information into a unified signal. This design follows the 

principle of multi-channel signal acquisition, commonly used in glove-based or 

wearable systems to minimize signal interference and ensure crosstalk-free, time-

aligned data fusion.
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S12. The architectures and results of different models

To evaluate the robustness of our approach, we compared CNN-LSTM with other 

commonly used models, such as LSTM, SVM, GRU, and CNN. All models were 

trained and tested on the same dataset. The model parameters were listed in Table S2 

and the results were summarized in Fig. S11. CNN-LSTM model consisted of two 1D 

convolutional layers (filters=64 and 128, kernel size=3), followed by a max-pooling 

layer, then connected to an LSTM layer with 100 units, and a final dense softmax output 

layer. LSTM algorithm is obtained by removing the original CNN layer. The GRU 

model consisted of a single gated recurrent unit layer with 100 units, followed by a 

dense softmax layer. All three models used a learning rate of 0.001, batch size of 32, 

and trained 100 epochs with class cross entropy loss using the Adam optimizer. 

Meanwhile, SVM utilized a radial basis function (RBF) kernel (C=1.0 and gamma = 

‘scale’), and was trained on statistical features (mean, variance, peak amplitude, step 

interval) extracted from the raw signals. CNN model included three 1D convolutional 

layers (64, 128, 128 filters), followed by ReLU activation and max pooling, then a 

flatten layer and a fully connected output. In summary, CNN-LSTM model outperforms 

others in gait classification due to its ability to extract spatial features via convolution 

and capture temporal dependencies through sequential modeling.
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Table S2. Characteristics, parameters, and accuracy of machine learning algorithms

Model Characteristic Parameter Accuracy

CNN-LSTM
Strong modeling of 

space and time

Conv, LSTM, Adam, 100 

epochs
93.7%

LSTM Controllable memory LSTM, Adam, 100 epochs 90.2%

SVM 
Dependent feature 

selection

RBF kernel, statistical 

features
89.9%

GRU Gradient residue GRU, Adam, 100 epochs 83.6%

CNN
No time modeling 

capability

3-layer convolution, fully 

connected
82.2%

Fig. S11 Dynamic graphs for five models: (a) CNN-LSTM, (b) LSTM, (c) SVM, (d) 

GRU, and (e) CNN.
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