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S1. The operation mechanism of the piezoelectric sensor
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Fig. S1 The operation mechanism of the piezoelectric sensor.
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S2. The piezoelectric response of PVDF fabricated via FDM and casting
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Fig. S2 Output voltage under different pressures at 1 Hz. (a) FDM printed PVDF. (b)

Casted PVDF.
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S3. Output performance of PVDF films with different areas
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Fig. S3 Output performance of 3D printed PVDF samples with different areas at 50 kPa

and 1 Hz. (a) Output voltage, (b) Output current.
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S4. The piezoelectric responses with different PDMS thickness
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Fig. S4 The output performance of 3D-printed PVDF with different PDMS thickness.

(a) Output voltage, (b) Output current.
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SS. The stability of 3D-printed PVDF under different temperature and humidity
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Fig. S5 The output performance of 3D-printed PVDF samples under different

temperature. (a) Output voltage, (b) Output current.
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Fig. S6 The output performance of 3D-printed PVDF samples under different humidity.

(a) Output voltage, (b) Output current.
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S6. The change of output voltage after five months
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Fig. S7 The change of output voltage after five months.
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S7. The intelligent system
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Fig. S8 The intelligent system consists of a sensor array, a printed circuit board (MCU)),

and a user interface.
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S8. Optimization of CNN architecture parameters
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Fig. S9 Optimization of CNN architecture parameters for human posture classification.

(a) The number of filters, (b) Kernel size, (¢c) The number of convolutional layers.
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S9. Operation process of the long short-term memory neural network unit
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Fig. S10 Schematic diagram of long short-term memory neural network unit structure.

The LSTM unit structure shown in Figure S8. The LSTM unit structure consists
of three parts: Forget-gate, Input-gate and Output-gate, which are used to select to retain
or delete information.

The gate contains a Sigmoid function, which sends a value between (0,1),
indicating how much input information can be transmitted. The expression of the

formula is as follows:

Sigmoid(x) = o(x) =

I+e ™™ (1)

Forget-door: Discarding information that is no longer known or unimportant. The
operation function is as follows :

f = o(W;x [x,h, ;] +bp )

where, x; is the reading of the specified time. hy; is the hidden information output

by the previous structural unit. Weis a weight matrix. by is a deviation

Input-gate: Determine what information is added to the cell state. The operation

S10



function is as follows:

1= o(W; x [Xt’ht - 1] +b;

€)

where, Wi is the Input-gate weight matrix ; bi is the Input-gate deviation ; it is output

for the current moment. The tanh function is used to create a new structural unit C; :

l-¢*

tanh (x) =

l+e”
C, = tanh(W_ x [x,h, ] +b,)
Ct=ftht_1+itht
Output-gate: Determine the useful information transmission of the current cell
state. The Output-gate function expression is as follows:
O, =0o(Wq x [Xt’ht— 1] +bg)

h, = O, x tanh(C))

4
)
(6)

()
(8)

The gate structural unit of long short-term memory neural network can adaptively

regulate the effective information of early learning. This method solves the important

events with long delay in time series.
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S10. The comparison of accuracy

The main reason for choosing CNN-LSTM algorithm in gait recognition is its ability to
effectively integrate spatiotemporal features. Gait is essentially a sequence with
temporal continuity and spatial structure. CNN is expert in extracting spatial features
of single frame images (such as joint position and limb morphology), while LSTM can
capture dynamic changes across time steps in gait cycles (such as walking rhythm and
motion coherence). Therefore, CNN-LSTM can adaptively learn the hierarchical
expression of spatiotemporal features in gait through end-to-end joint training, which
has significant advantages in dynamic behaviors modeling.

Table S1. Compare the accuracy for posture recognition by different types of sensors.

Sensor type  No. of sensors Network type Accuracy Ref.
triboelectric 2 ANN 98.4% [1]
triboelectric 5 SVM 93.1% [2]
piezoelectric 1 LSTM 92.6% [3]
piezoelectric 2 CNN 94.7% (4]
piezoelectric 1 RF 96.3% [5]
piezoelectric 2 CNN-LSTM 98.7% This work
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S11. Sensor synchronization process

To ensure accurate bilateral gait analysis, each insole-mounted sensor in our system
was equipped with a MSP430F5529 microcontroller, connected via wired channels for
reliable data transmission. This architecture allows motion signals to be independently
collected in real time. The two microcontrollers were initialized with a shared timing
reference during system startup, ensuring temporal alignment of the data streams. Key
features such as speed, gait cycles, and center of mass changes were extracted from
both data streams. Moreover, a specific data fusion algorithm, Kalman filtering, was
then applied to combine the information into a unified signal. This design follows the
principle of multi-channel signal acquisition, commonly used in glove-based or
wearable systems to minimize signal interference and ensure crosstalk-free, time-

aligned data fusion.
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S12. The architectures and results of different models

To evaluate the robustness of our approach, we compared CNN-LSTM with other
commonly used models, such as LSTM, SVM, GRU, and CNN. All models were
trained and tested on the same dataset. The model parameters were listed in Table S2
and the results were summarized in Fig. S11. CNN-LSTM model consisted of two 1D
convolutional layers (filters=64 and 128, kernel size=3), followed by a max-pooling
layer, then connected to an LSTM layer with 100 units, and a final dense softmax output
layer. LSTM algorithm is obtained by removing the original CNN layer. The GRU
model consisted of a single gated recurrent unit layer with 100 units, followed by a
dense softmax layer. All three models used a learning rate of 0.001, batch size of 32,
and trained 100 epochs with class cross entropy loss using the Adam optimizer.
Meanwhile, SVM utilized a radial basis function (RBF) kernel (C=1.0 and gamma =
‘scale’), and was trained on statistical features (mean, variance, peak amplitude, step
interval) extracted from the raw signals. CNN model included three 1D convolutional
layers (64, 128, 128 filters), followed by ReLU activation and max pooling, then a
flatten layer and a fully connected output. In summary, CNN-LSTM model outperforms
others in gait classification due to its ability to extract spatial features via convolution

and capture temporal dependencies through sequential modeling.
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Table S2. Characteristics, parameters, and accuracy of machine learning algorithms

Model Characteristic Parameter Accuracy
Strong modeling of Conv, LSTM, Adam, 100
CNN-LSTM _ 93.7%
space and time epochs
LSTM Controllable memory LSTM, Adam, 100 epochs 90.2%
Dependent feature RBF kernel, statistical
SVM ) 89.9%
selection features
GRU Gradient residue GRU, Adam, 100 epochs 83.6%
No time modeling 3-layer convolution, fully
CNN » 82.2%
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Fig. S11 Dynamic graphs for five models: (a) CNN-LSTM, (b) LSTM, (c¢) SVM, (d)

GRU, and (e) CNN.
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