Supporting Information

Ionogel surface patterns fabricated by photodimerization-induced self-organized spatial reconstruction

Shuai Zhou, Tiantian Li, Jin Li, Mengda Xu, Ruoyu Xu, Shuzhen Yan, Ying Quan, Tianjiao Ma, and Xuesong Jiang*

Frontiers Science Center for Transformative Molecules, State Key Laboratory of Chem-Bio Synergistic Matter Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

*E-mail: ponygle@sjtu.edu.cn

1. Experimental Section

1.1 Materials

PVA (Mn = 74000; 99% hydrolyzed) was purchased from Sigma-Aldrich chemical Co. (Shanghai, China). 9-Anthraldehyde and 4-Methylbenzenesulfonic acid monohydrate (TSOH) were provided by Adamas-Beta Co. Ltd. (Shanghai, China). 1-Ethyl-3-methylimidazolium Dicyanamide (EMIMDCA) was purchased from Meryer Chemical Technology Co. Ltd. (Shanghai, China). All other chemicals were provided by Adamas-Beta Co. Ltd. (Shanghai, China).

1.2 Characterizations

¹H NMR spectra were acquired using a 500 MHz ADVANCE NMR spectrometer (Bruker, Germany) with tetramethylsilane (TMS) as the internal standard, and Dimethyl Sulfoxide (DMSO) – d_6 as the solvent at room temperature. FT-IR spectra were obtained using a PerkinElmer Spectrum 100 FT-IR spectrometer (U.K.) with a diamond ATR probe and In-situ infrared spectrometer (Nicolet iS50, Thermo Fisher, USA). Data collection parameters included: spectral range 4000-500 cm⁻¹, resolution of 0.5 cm⁻¹ (PerkinElmer) and 0.005 cm⁻¹ (Nicolet), and 32 co-added scans per measurement. Background spectra (ambient air) were recorded before each sample scan and automatically subtracted. All spectra were baseline-corrected and normalized. The storage modulus and loss modulus curves were recorded using a dynamic thermomechanical analyzer (DMA 850, TA, USA) in tension mode under 1 Hz frequency, 0.5% strain amplitude, and temperature ramp from -30 °C to 120 °C at 5 °C ·min⁻¹. The mechanical properties were measured using an electronic material testing machine (Instron 3365, Instron, USA) with a 5 KN load cell. Samples were stretched at 50 mm·min⁻¹ crosshead speed. Ultraviolet-visible (UV-vis) absorbance spectra were obtained using a UV-vis spectrophotometer (TU-1901, Perkin-Elmer, China). The patterned surfaces with microstructures were captured using laser scanning confocal microscopy (LSCM, LEXT VK-X1000, Keyence, Japan). Fluorescence images of the AnPVA ionogel were visualized using a Super-Resolution Multiphoton Confocal Microscope (TCS SP8 STEDM 3X, Leica, Germany). Fluorescence intensity changes were measured using an advanced fluorescence steady-state transient measurement system (QM/TM/IM, PTI, USA) with a xenon arc lamp source. The excitation wavelength was set to 365 nm, with emission collected from 380 to 600 nm at 1 nm intervals. The surface modulus of the microstructure was observed by atomic force microscopy (FastScan Bio, Bruker, Germany). An LCR meter (TH2830) was utilized to record the resistive signals at a 10 kHz sweep frequency and 1 V AC voltage, Pressure provided by the electronic material testing machine. The UV light source is an LED and the intensity is about 60 mW ⋅ cm⁻².

1.3 Synthesis of AnPVA

The AnPVA was synthesized using the one-step method outlined in Figure S1. The synthesis involved dissolving 5 g PVA and 2.34 g 9-anthraldehyde in 100 mL DMSO solvent. Subsequently, 0.5 g TSOH was added, and the reaction was carried out under a nitrogen atmosphere at 80 °C for 8 hours. After the reaction was complete, the product was precipitated using anhydrous ethanol to obtain a light-yellow material. The product was washed several times and vacuum-dried at 60 °C for 10 hours. As shown in Figure S2, the structure of AnPVA was confirmed by ¹H NMR and FTIR spectroscopy.

1.4 Preparation of AnPVA-IL Ionogel

Under vigorous stirring at 80 °C, EMIMDCA was gradually added to a 10 wt.% AnPVA/DMSO solution to obtain a homogeneous AnPVA-IL solution. The solution was then slowly poured onto a glass plate and dried at 80 °C for 24 hours. Subsequently, the material was further dried in a vacuum oven at 70 °C for 4 hours to yield the AnPVA-IL ionogel. The ionogel was then carefully peeled from the glass plate.

1.5 Preparation of AnPVA-IL surface microstructures

The glass plate with AnPVA-IL was placed on a heating stage at 80°C, with a mask positioned approximately 3 mm above the AnPVA-IL surface. The AnPVA-IL was

irradiated with UV light at a height of 10 cm to induce microstructure growth. After irradiation, the AnPVA-IL with the microstructure was manually peeled off from the glass plate.

2. Results and discussion

Figure S1. The synthesis route to AnPVA.

Figure S2. Molecular Structure Analysis of AnPVA. (a) ¹H NMR spectrum of An-Am in DMSO- d_6 . (b) FTIR spectrum of PVA and AnPVA.

Figure S3. Comparison of microstructure growth under different conditions. Scale bars: $500 \ \mu m$.

Figure S4. The process of producing ionogel and the photo.

Figure S5. Mechanical properties of the ionogel. (a) The stress-strain curve of AnPVA. (b) Stress-strain curves and (c) tensile resilience curves of AnPVA-IL at different ionic liquid contents. (d) DMA curve of AnPVA-IL 2.

Figure S6. Degree of anthracene dimerization. (a) Evolution of UV-vis spectra during the photodimerization process of AnPVA-IL upon 365 nm UV exposure. (b) Quantification of reactant anthracene content through variations in 368 nm absorption intensity.

Figure S7. Height evolution of the surface structure at different exposure times.

Figure S8. The modulus distribution maps of the AnPVA-IL surface structure under different exposure times.

Figure S9. Optical photographs of ionogel surface morphology obtained by controlling the range of exposure area.

Figure S10. Fluorescence changes of AnPVA-IL under UV irradiation. (a) Evolution of fluorescence intensity under full exposure. (b) Changes in fluorescence distribution before and after localized exposure.

Figure S11. Pattern control of AnPVA-IL surfaces. (a) Optical images of the surface morphology obtained through stripe masks with different spacings. (b) Optical images of the pattern growth evolution under the same photomask. All scale bars: $500 \mu m$.

Figure S12. Optical photographs of disordered complex patterns. All scale bars: 1 mm.

Figure S13. Change in the height of the pattern before and after the second full UV exposure.