Supplementary Information

Room Temperature Ferromagnetic Ordering from Bound Magnetic Polarons in Rare Earth Doped Ultrathin MoS₂ Nanosheets

Eng Tuan Poh[^], Rajasree Das[^], Manikandan Marimuthu[^], Zheng Zhang[#], Ramanathan Mahendiran^{^*}, Chorng Haur Sow^{^*}

[^] Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551

[#]Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634

*Address correspondence to Prof. Chorng Haur Sow. Tel: (+65) 65162957. E-mail: <u>physowch@nus.edu.sg</u> A/Prof. Ramanathan Mahendiran. Tel: +(65) 65162616. Email: <u>phyrm@nus.edu.sg</u>

Dopant	Stock Solution	Vol. of ErCl ₃	Vol. of TbCl ₃	Vol. of EuCl ₃
Conc. (%)	Conc. (mM)	solution added (mL)	solution added (mL)	solution added (mL)
2	2.5		0.2	
3	2.5	0.3	0.3	0.3
5	2.5	0.5	0.5	0.5
7	2.5		0.7	
8	2.5	0.8	0.8	0.8

Table S1. Determination of dopant volume and concentration

$$(NH_4)_2 MoS_4 \xrightarrow{\Delta (155 \circ C - 280 \circ C)} MoS_3 + 2NH_3 + H_2S$$

Since $(NH_4)_2MoS_4$ degrades to MoS_3 in 1:1 ratio, and the lanthanide rare earth ions $(Er^{3+}, Tb^{3+}, Eu^{3+})$ are expected to be substitutional dopants in the 2D nanosheet host lattices, the quantity of dopant solution added can be determined based upon molar ratio against the atomic proportion of Mo^{4+} sites in the system.

As representative, the calculations for 5% doping of Er^{3+} , Tb^{3+} and Eu^{3+} are as follows:

Since 0.025 mmol (6.67 mg) of $(NH_4)_2MoS_4$ produced 0.025 mmol of MoS_3 with an equivalent amount of Mo^{4+} sites.

For 5% Tb³⁺ doping, quantity of Tb³⁺ ions required = $0.025/100 \times 5 = 0.00125$ mmol

For 2.5 mM of TbCl₃ solution, volume used in the reaction = 0.00125/2.5 = 0.0005 L = <u>500 µL</u>

Molar mass of $TbCl_3 = 265.28$ g/mol

To prepare the solution, mass of TbCl₃ salt dissolved in 1 mL deionized H₂O = $2.5 \times 1/1000 \times 265.28 = 0.6632$ mg

For 5% Er^{3+} doping, quantity of Er^{3+} ions required = $0.025/100 \times 5 = 0.00125$ mmol

For 2.5 mM of ErCl₃ solution, volume used in the reaction = $0.00125/2.5 = 0.0005 \text{ L} = 500 \mu \text{L}$

Molar mass of $ErCl_3 = 273.62$ g/mol

To prepare the solution, mass of TbCl₃ salt dissolved in 1 mL deionized $H_2O = 2.5 \times 1/1000 \times 273.62 = 0.6841 \text{ mg}$

For 5% Tb³⁺ doping, quantity of Tb³⁺ ions required = $0.025/100 \times 5 = 0.00125$ mmol

For 2.5 mM of TbCl₃ solution, volume used in the reaction = $0.00125/2.5 = 0.0005 \text{ L} = 500 \mu \text{L}$

Molar mass of $TbCl_3 = 258.32$ g/mol

To prepare the solution, mass of TbCl₃ salt dissolved in 1 mL deionized $H_2O = 2.5 \times 1/1000 \times 258.32 = 0.6458 \text{ mg}$

Figure S1. TEM and HRTEM characterizations for the MoS_2 nanosheets doped with varying Tb concentrations. (a) Pristine MoS_2 nanosheets (Left to Right): TEM, HRTEM, with corresponding SAED mapping and cross-sectional profile for the marked linear region. (b) 5% Tb-doped MoS_2 nanosheets (Left to Right): TEM, HRTEM, with corresponding SAED mapping and cross-sectional profile for the marked linear region. (c) 7% Tb-doped MoS_2 nanosheets (Left to Right): TEM, HRTEM, with corresponding SAED mapping and cross-sectional profile for the marked linear region. (c) 7% Tb-doped MoS_2 nanosheets (Left to Right): TEM, HRTEM, with corresponding SAED mapping and cross-sectional profile for the marked linear region.

Figure S2. XPS characterization for pre-annealed MoS_3 nanosheets. (a) Signals pertaining to S2p elemental components, with distinct presence of MoS_3 labelled peaks (due to S_2^{2-} and bridging S contributions). (b) Signal pertaining to Mo3d elemental components, characterized by peak contributions from MoS_3 and MoO_x side product impurities.

Figure S3. Full dataset of XPS characterization for MoS₂ nanosheets doped with different lanthanide rare-earth elements (Tb, Eu, Er). (a – e) MoS₂ nanosheets doped with 5% Tb, characterized of (a) Mo3d (b) S2p (c) O1s (d) C1s (e) Tb3d elemental signals. (f – j) MoS₂ nanosheets doped with 5% Eu, characterized of (f) Mo3d (g) S2p (h) O1s (i) C1s (j) Eu3d elemental signals. (k – o) MoS₂ nanosheets doped with 5% Er, characterized of (f) Mo3d (g) S2p (h) O1s (i) C1s (j) Eu3d elemental signals. (k – o) MoS₂ nanosheets doped with 5% Er, characterized of (f) Mo3d (g) S2p (h) O1s (i) C1s (j) Er4d elemental signals. (p – r) Quantitative Mo:S atomic ratios for (p) Tb-doped MoS₂ (q) Eu-doped MoS₂ (r) Er-doped MoS₂ nanosheets.

Figure S4. Magnetic characterization of Ln-doped MoS_2 (Ln = Er, Eu) nanosheets with variable atomic doping concentrations. (a) M-H plot for Er-doped MoS_2 nanosheets with 3%, 5% and 8% atomic Er^{3+} doping, after correction of background paramagnetic contributions. Trend comparison shows an optimal magnetization at 5% Er doping. (b) M-H plot for Eu-doped MoS_2 nanosheets with 3%, 5% and 8% atomic Eu^{3+} doping, after correction of background paramagnetic contributions. Trend comparison shows an optimal magnetization at 5% Eu doping. Eu doping paramagnetic contributions. Trend comparison shows an optimal magnetization at 5% Eu doping.

Figure S5. Full dataset of XPS characterization for Tb-doped MoS₂ nanosheets of various doping concentrations. (a) Pristine sample analyzed in terms of Mo3d, S2p, O1s, C1s and Tb3d elemental signals. **(b)** 5% Tb-doped MoS₂ sample analyzed in terms of Mo3d, S2p, O1s, C1s and Tb3d elemental signals. **(c)** 7% Tb-doped MoS₂ sample analyzed in terms of Mo3d, S2p, O1s, C1s and Tb3d elemental signals. **(d)** 8% Tb-doped MoS₂ sample analyzed in terms of Mo3d, S2p, O1s, C1s and Tb3d elemental signals. **(d)** 8%

Figure S6. Linear correlation of T_C to dopant concentrations across the three sample measurements, with the associated fitting statistics, derived from temperature dependent FC-ZFC magnetic studies of 2% and 7% Tb-doped MoS₂ nanosheets.

Figure S7. BMP model fitting of initial M-H relation for 5% Tb-Doped MoS₂ sample at different temperatures. (a) 10K. (b) 100K. (c) 200K. (d) 275K. (e) 300K. (f) 325K. (g) 350K. (h) 390K.

	A	B	С	D	(h)		A	В	С	D	
1	Model	Lang2 (User)			(0)	1	Model	Lang2 (User)			
2	Equation	A*((1/tanh(B*x))-1/ (B*x))+(C*x)				2	Equation	A*((1/tanh(B*x))-1	A*((1/tanh(B*x))-1/(B*x))+(C*x)		
3	Reduced Chi-Sqr	5.40944E-6				3	Reduced Chi-Sqr	3.26389E-6			
4	Adj. R-Square	0.99018				4	Adj. R-Square	0.9992			
5			Value	Standard Error		5			Value	Standard Erro	
6	20/ Th Mac 2	A	0.05631	0.00149		6	5% Tb MoS2	MO	0.21928	0.0014	
7	2% 10 M052	B	0.00244	1.26906E-4		7		Meff/kT	0.00279	3.98225E-	
	emu/g	С	3.78536E-6	1.92833E-7		8	eniu/g	Xm	3.878E-6	1.88849E-	
8		2% Tb MoS ₂ BMP F	itting					5% Tb MoS ₂ BMP F	itting		
8		2% Tb MoS ₂ BMP F	itting					5% Tb MoS ₂ BMP F	itting		
8	Α	2% Tb MoS ₂ BMP F	itting	D			۵	5% Tb MoS ₂ BMP F	itting	D	
8	A	2% Tb MoS ₂ BMP F B	itting C	D	(d)	1	A	5% Tb MoS ₂ BMP F	itting C	D	
8	A Model	2% Tb MoS ₂ BMP F B Lang2 (User)	itting C	D	(d)	1	A Model	5% Tb MoS ₂ BMP F B Lang2 (User)	itting C	D	
8 1 2	A Model Equation	2% Tb Mos ₂ BMP F B Lang2 (User) A*((1/tanh(B*x))-1/ (B*x))+(C*x)	itting C	D	(d)	1 2	A Model Equation	5% Tb MoS ₂ BMP F B Lang2 (User) A*((1/tanh(B*x))-1/ (B*x))+(C*x)	C	D	
8 1 2 3	A Model Equation Reduced Chi-Sqr	2% Tb MoS ₂ BMP F B Lang2 (User) A*((1/tanh(B*x))-1/ (B*x))+(C*x) 1.29883E-6	itting C	D	(d)	1 2 3	A Model Equation Reduced Chi-Sqr	5% Tb Mos, BMP F B Lang2 (User) A*((1/tanh(B*x))-1/ (B*x))+(C*x) 5.10721E-7	C	D	
8 1 2 3 4	A Model Equation Reduced Chi-Sqr Adj. R-Square	2% Tb MoS ₂ BMP F B Lang2 (User) A*((1/tanh(B*x))-1/ (B*x))+(C*x) 1.29883E-6 0.91922	C	D	(d)	1 2 3 4	A Model Equation Reduced Chi-Sqr Adj. R-Square	5% Tb MoS ₂ BMP F B Lang2 (User) A*((1/tanh(B*x))-1/ (B*x))+(C*x) 5.10721E-7 0.99887	C	D	
8 1 2 3 4 5	A Model Equation Reduced Chi-Sqr Adj. R-Square	2% Tb MoS ₂ BMP F B Lang2 (User) A*((1/tanh(B*x))-1/ (B*x))+(C*x) 1.29883E-6 0.91922	C C Value	D Standard Error	(d)	1 2 3 4 5	A Model Equation Reduced Chi-Sqr Adj. R-Square	5% Tb MoS ₂ BMP F B Lang2 (User) A*((1/tanh(B*x))-1/ (B*x))+(C*x) 5.10721E-7 0.99887	C C Value	D Standard Error	
8 1 2 3 4 5 6	A Model Equation Reduced Chi-Sqr Adj. R-Square	2% Tb Mos ₂ BMP F B Lang2 (User) A*((1/tanh(B*x))-1/ (B*x))+(C*x) 1.29883E-6 0.91922 A	C C Value 0.01319	D Standard Error 3.91258E-4	(d)	1 2 3 4 5 6	A Model Equation Reduced Chi-Sqr Adj. R-Square	5% Tb Mos ₂ BMP F B Lang2 (User) A*((1/tanh(B*x))-1/ (B*x))+(C*x) 5.10721E-7 0.99887 A	C C Value 0.01353	D Standard Error 5.22567E-4	
8 1 2 3 4 5 6 7	A Model Equation Reduced Chi-Sqr Adj. R-Square Per mg	2% Tb MoS ₂ BMP F B Lang2 (User) A*((1/tanh(B*x))-1/ (B*x))+(C*x) 1.29883E-6 0.91922 A B	itting C Value 0.01319 0.00487	D Standard Error 3.91258E-4 5.00092E-4	(d)	1 2 3 4 5 6 7	A Model Equation Reduced Chi-Sqr Adj. R-Square	5% Tb Mos ₂ BMP F B Lang2 (User) A*((1/tanh(B*x))-1/ (B*x))+(C*x) 5.10721E-7 0.99887 A B	C C Value 0.01353 0.00309	D Standard Error 5.22567E 2.81077E	

Figure S8. Fitting statistics under the BMP model (Langevin relation) for Tb-doped MoS₂ samples at different doping concentrations. (a) 2% Tb³⁺ Doping. (b) 5% Tb³⁺ Doping (c) 7% Tb³⁺ Doping. (d) 8% Tb³⁺ Doping.

\sim		A	В	С	D			А	В	С	D
(a)	1	Model	Lang2 (User)			(D)	1	Model	Lang2 (User)		
	2	Equation	A*((1/tanh(B*x))-1/ (B*x))+(C*x)				2	Equation	A*((1/tanh(B*x))-1/ (B*x))+(C*x)		
	3	Reduced Chi-Sqr	9.10802E-6				3	Reduced Chi-Sqr	7.89629E-6		
	4	Adj. R-Square	0.99968				4	Adj. R-Square	0.99744		
	5			Value	Standard Error		5			Value	Standard Error
	6		A	0.35166	0.00118		6		Α	0.27671	0.00134
	7	emug	В	0.0018	1.69719E-5		7	emug	В	0.00201	2.94455E-5
	8		С	2.69409E-5	9.35488E-8		8		С	1.38249E-6	1.08066E-7
			5% Tb MoS ₂ BMP Fitti	ng – 10K					5% Tb MoS ₂ BMP Fitti	ng – 100K	
		А	В	С	D			А	В	С	D
(C)	1	Model	Lang2 (User)			(d)	1	Model	Lang2 (User)		
	2	Equation	A*((1/tanh(B*x))-1/ (B*x))+(C*x)				2	Equation	A*((1/tanh(B*x))-1/ (B*x))+(C*x)		
	3	Reduced Chi-Sqr	1.40327E-6				3	Reduced Chi-Sqr	3.56785E-6		
	4	Adj. R-Square	0.99997				4	Adj. R-Square	0.99779		
	5			Value	Standard Error		5			Value	Standard Error
	6		MO	0.25541	1.59728E-4		6	5% Tb MoS2	MO	0.26763	5.61767E-4
	7	5% Tb MoS2	Meff	0.00242	4.98951E-6		7	5% Tb MoS2	Meff	0.00311	2.636E-5
	8		Xm	-3.33035E-7	1.36125E-8		8	5% Tb MoS2	Xm	-1.62259E-6	4.88298E-8
		A	В	С	D			A	В	C	D
(e)	1	Model	Lang2 (User)			(f)	1	Model	Lang2 (User)		
	2	Equation	A*((1/tanh(B*x))-1/ (B*x))+(C*x)				2	Equation	A*((1/tanh(B*x))-1/ (B*x))+(C*x)		
	3	Reduced Chi-Sqr	2.21457E-6				3	Reduced Chi-Sqr	4.05755E-7		
	4	Adj. R-Square	0.99795				4	Adj. R-Square	0.9991		
	5			Value	Standard Error		5			Value	Standard Error
	6	5% Tb MoS2	MO	0.19529	4.2268E-4		6	5% Tb MoS2	MO	0.06512	2.21789E-4
	7	5% Tb MoS2	Meff	0.00348	3.26673E-5		7	5% Tb MoS2	Meff	0.00223	2.47635E-5
	8	5% Tb MoS2	Xm	4.14597E-7	3.73919E-8		8	5% Tb MoS2	Xm	2.68423E-6	1.82744E-8
			5% Tb MoS ₂ BMP Fittir	ng – 300K					5% Tb MoS ₂ BMP Fitti	ng – 325K	
(n		A	В	С	D	(h)		A	В	С	D
g)	1	Model	Lang2 (User)			(11)	1	Model	Lang2 (User)		
	2	Equation	A*((1/tanh(B*x))-1 (B*x))+(C*x)	1			2	Equation	A*((1/tanh(B*x))-1/ (B*x))+(C*x)		
	3	Reduced Chi-Sqr	9.06939E-	8			3	Reduced Chi-Sqr	1.81834E-7		
	4	Adj. R-Square	0.9991	7			4	Adj. R-Square	0.99392		
	5			Value	Standard Error		5			Value	Standard Error
	6	5% Tb MoS2	MO	0.04709	9.08959E-5		6	5% Tb MoS2	MO	0.0198	1.65902E-4
	7	5% Tb MoS2	Meff	0.00301	2.30262E-5		7	5% Tb MoS2	Meff	0.00183	4.37999E-5
	8	5% Tb MoS2	Xm	8.729E-7	7.85797E-9		8	5% Tb MoS2	Xm	5.43035E-7	1.31653E-8
			5% Tb MoS ₂ BMP Fittir	ng – 350K					5% Tb MoS ₂ BMP Fitti	ng – 390K	

Figure S9. Fitting statistics under the BMP model (Langevin relation) for 5% Tb-doped MoS₂ sample at different temperatures. (a) 10K. (b) 100K. (c) 200K. (d) 275K. (e) 300K. (f) 325K. (g) 350K. (h) 390K.

		А	В	С	D
(a)	1	Model	Line		
	2	Equation	$y = A + B^*x$		
	3	Reduced Chi-Sq	r 7.1415E-37		
	4	Adj. R-Square	0.99606		
	5			Value	Standard Error
	6		Α	9.2391E-17	1.10902E-18
	7	men	В	4.485E-18	1.99186E-19
				· · · · ·	
		А	В	С	D
(b)	1	Model	Pow2P2		
	2	Equation	$y = a^{*}(1 + x)^{h}b$		
	3	Reduced Chi-Sqr	3.52753E31		
	4	Adj. R-Square	0.99943		
	5			Value	Standard Error
	6	N	а	1.49988E19	1.63671E18
	7	N	b	-1.26834	0.04513
		Α	В	С	D
(c)	1	Model	Cubic		
	2	Equation	y = A + B*x + C*x ⁴ 2 + D*x^3	N	
	3	Reduced Chi-Sqr	1.47656E-36	6	
	4	Adj. R-Square	0.99958	3	
	5			Value	Standard Error
	6		A	-8.86054E-1	9 1.52124E-18
	1	meff	в	3.40676E-1	9 5.31311E-20
	8			-1.01368E-2	1 4.30105E-22
	9		U	4.94242E-2	4 9.21016E-25

Figure S10. Fitting statistics for parameter trends displayed under (a) Figure 8a. (b) Figure 8c. (c) Figure 8d.