Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

An oxygen-deficient tin oxide-modified electrode for nanomolar detection of chloramphenicol

Sampathkumar Prakasam^{a, b}, Giribabu Krishnan^{a, b}, Suresh Chinnathambi^{a, b*}

 ^aElectrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi-630 003, Tamil Nadu, India
^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
*Corresponding Author: Tel: 04565241338, Email: csuresh@cecri.res.in (C. Suresh)

Fig. S1 FESEM images of SnO₂(A,B) and DSnO₂(C,D).

Fig. S2 Elemental mapping of SnO₂ (A-C) and DSnO₂ (D-F).

Fig. S3 shows the CV response for varying amounts of DSnO₂ loaded GCE in 0.1 M PBS (pH 6) in the presence of 0.1 mM CPL.

Fig. S4 EIS of bare GCE, SnO₂/GCE, and DSnO₂/GCE.

Fig. S5: DPV results of $DSnO_2/GCE$ in water, milk, and honey samples with a standard addition of 2, 6, and 8 μ M of CPL.

Fig. S6. Chromatographic results of CPL at different concentrations in various real samples (water, milk, and honey) prepared in PBS buffer (pH 6).