Supplementary Material

Highly UV-responsive indium-free Zn-Sn-Al-O phototransistor for optoelectronic artificial synapses

Shice Wei, ^{‡a} Xin Zhang, ^{‡a} Bojia Chen, ^a Jiyuan Zhu, ^a Xuefeng Wu, ^{c*} David W. Zhang, ^a Qing-Qing Sun, ^a Shen Hu^{a,b*} and Li Ji^{a,b*}

a. School of Microelectronics, Fudan University, Shanghai 200433, China.

b. Jiashan Fudan Institute, Zhejiang 314110, China.

c. Shanghai Integrated Circuit Manufacturing Innovation Center Co., Ltd., Shanghai 201203, China.

‡ S. W. and X. Z. contributed equally to this paper.

Corresponding authors email: <u>xuefeng.wu@shnicic.com</u>; <u>hushen@fudan.edu.cn</u> and <u>lji@fudan.edu.cn</u>.

Fig. S1. AFM image of ZTAO films on SiO₂/Si substrate.

Fig. S2. (a) Cross-sectional TEM image of the ZTAO films on SiO_2/Si substrate; (b) selected area electron diffraction (SAED) pattern of ZTAO films.

Fig. S3. X-ray diffraction pattern of ZTAO films on Si/SiO₂ substrate.

Fig. S4. XPS full spectrum of ZTAO thin films.

Fig. S5. (a) Top-view SEM image of the ZTAO phototransistor; (b) magnified SEMimageofthechannelregion.

Fig. S6. Schematic illustration of the optoelectronic performance measurement setup for the ZTAO phototransistors.

Fig. S7. Output characteristics of the ZTAO phototransistors: (a) under dark conditions; (b) under illumination (310 nm, 5 mW cm⁻²).

Fig. S8. Transfer characteristics of the ZTAO phototransistor measured under dark conditions and illumination at wavelengths of 280 nm, 310 nm, 350 nm, 365 nm, and 400 nm (V_{DS} =1 V, light intensity=5 mW cm⁻²).

Fig. S9. Deconvoluted O 1*s* XPS spectrum of ZTAO films, showing the fitted components corresponding to different oxygen bonding states.

Fig. S10. Excitatory postsynaptic current responses of the ZTAO optoelectronic artificial synapses under single-pulse optical stimulation with negative gate bias $(V_{DS}=0.1 \text{ V}, 5 \text{ mW cm}^{-2}, \text{ duration}=100 \text{ ms}, 310 \text{ nm}).$

Fig. S11. Schematic illustration depicting the transition from short-term plasticity to long-term plasticity.

Fig. S12. Relationship between Δ EPSC and pulse frequency in ZTAO optoelectronic synapses.

Structure	Fabrication methods	Condition	<i>R</i> (A W ⁻¹)	D* (Jones)	PDCR (%)	Ref.
InAlZnO	Sputtering	250 nm	6.18	_	~107	1
InSnZnO	Sputtering	367 nm	480	3.20×10^{12}	~109	2
SiInZnO	Sputtering	350 nm	4930	5.47×10^{15}	4.87×10^{6}	3
H: InGaZnO	Sputtering	400 nm	1.49×10^{4}	4.00×10^{13}	~10 ⁶	4
InGaZnO	Sputtering	365 nm	126.2	6.80 × 10 ¹³	6.20×10^8	5
GaO _x	Sputtering	254 nm	4100	2.50×10^{13}	~104	6
Ga ₂ O ₃	Sputtering	254 nm	~104	~1015	~109	7
ZnO/Ga ₂ O ₃	PLD	254 nm	178	6.80×10^{14}	1.70×10^{6}	8
ZnO/SnO ₂	Spin-coating	365 nm	82.8	7.79×10^{13}	~10 ¹⁰	9
IGZO/SnO _x	Sputtering	320 nm	984	3.30×10^{14}	~107	10
ZnSnAlO	PEALD	310 nm	658	6.09 × 10 ¹³	1.22 × 10 ⁸	This
						work

Table S1. Comparison of the optoelectronic performance of AOS-based phototransistor.

References:

- T. H. Cheng, S. P. Chang, Y. C. Cheng and S. J. Chang, *IEEE Photonics Technol. Lett.*, 2019, **31**, 1005-1008.
- B. Chen, J. Zhu, Q. Han, S. Wei, Y. Zhang, S. Hu, X. Wu, D. W. Zhang, Q. Sun, R. Zhang, K. Huang and L. Ji, *Appl. Surf. Sci.*, 2024, 669, 160586.
- 3. A. Sarkar and S. Y. Lee, ACS Appl. Electron. Mater., 2023, 5, 1057-1066.
- 4. H. Y. Rho, A. Bala, A. Sen, U. Jeong, J. Shim, J. o. Oh, Y. Ju, M. Naqi and S. Kim, *ACS Appl. Nano Mater.*, 2023, **6**, 15990-15999.
- 5. H. Ferhati and F. Djeffal, Sens. Actuators, A, 2021, 318, 112523.
- Y. Qin, S. Long, Q. He, H. Dong, G. Jian, Y. Zhang, X. Hou, P. Tan, Z. Zhang, Y. Lu, C. Shan, J. Wang, W. Hu, H. Lv, Q. Liu and M. Liu, *Adv. Electron. Mater.*, 2019, 5, 1900389.
- M. I. Pintor-Monroy, M. G. Reyes-Banda, C. Avila-Avendano and M. A. Quevedo-Lopez, *IEEE Sens. J.*, 2021, 21, 14807-14814.
- Y. Li, C. Deng, B. Huang, S. Yang, J. Xu, G. Zhang, S. Hu, D. Wang, B. Liu, Z. Ji, L. Lan and J. Peng, ACS Appl. Mater. Interfaces, 2023, 15, 18372-18378.
- 9. H. Choi, S. Seo, J.-H. Lee, S.-H. Hong, J. Song, S. Kim, S.-Y. Yim, K. Lee, S.-J. Park and S. Lee, *J. Mater. Chem. C*, 2018, **6**, 6014-6022.
- 10. J. Yu, K. Javaid, L. Liang, W. Wu, Y. Liang, A. Song, H. Zhang, W. Shi, T.-C.

Chang and H. Cao, ACS Appl. Mater. Interfaces, 2018, 10, 8102-8109.