Supporting Information

Soluble, Colorless and Biobased Polyimides with High Thermal Stability Derived from Renewable Anethole

Fangyu Li^a, Yongzhen Wang^a, Jiawen Li^a, Haijiao Xie^b, Jiajia Wang^{a,}*

^aKey Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of College of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, P. R. China
^bHangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, P. R. China

Corresponding author e-mail: <u>wangjiajia@xtu.edu.cn</u> (Jiajia Wang)

Fig. S1 ¹H NMR (CDCl₃, 400 MHz) of DAAM.

Fig. S2 13 C NMR (CDCl₃, 100 MHz) of DAAM.

Sample Spectra

Fig. S3 HRMS spectrum of DAAM.

Fig. S4 HRMS spectrum of DAN.

Fig. S5 ¹H NMR (CDCl₃, 400 MHz) of ODPA-DAN.

Fig. S6 $^{\rm 13}{\rm C}$ NMR (CDCl_3, 100 MHz) of ODPA-DAN.

Fig. S7¹⁹F NMR (CDCl₃, 376 MHz) of 6FDA-DAN.

Fig. S8 ¹H NMR (CDCl₃, 400 MHz) of BPADA-DAN.

Fig. S9 ¹³C NMR (CDCl₃, 100 MHz) of BPADA-DAN.

Fig. S10 Stress-strain curves of the biobased polyimides.

Ref.	Name of monomer	Name of PI	$T_{\rm g}(^{\circ}{\rm C})$	T_{d5} (°C)	Transparency
This	6FDA	6FDA-DAN	300	519	84% (450nm)
work	ODPA	ODPA-DAN	265	470	82.7% (450nm)
		PI(BAC)	302	328	2% (400nm)
	OAC	PI(FAC)	275	321	1.4% (400nm)
1		PI(HAC)	219	291	83.5% (400nm)
1	OOD	PI(BOD)	283	457	1% (400nm)
		PI(FOD)	288	456	1% (400nm)
		PI(HOD)	228	444	84.4% (400nm)
2	Daidzein-Based Dianhydride	PI-D-F	267.9	456.9	87% (450nm)
		PI-D-FO	280.4	487.7	84.1% (450nm)
		PI-D-O	302.6	517.8	78.5% (450nm)
	Daidzein-Based Dianhydride and Daidzein-Based Diamine	PI-D-D	318.2	550.6	75.90% (450nm)
	Daidzein-Based Diamine	PI-O-D	286.7	492.4	81.2% (450nm)
	ODPA	PI-O-O	258.5	446.5	86.8% (450nm)
	αATA-Me	PI-1 (CBDA)	ND	365	88% (450nm)
	βΑΤΑ-Με	PI-1 (CBDA)	ND	380	76% (450nm)
	αATA-Me	PI-2 (PMDA)	ND	410	80% (450nm)
3	βATA-Me	PI-2 (PMDA)	ND	385	6% (450nm)
	αATA-Me	PI-3 (BTDA)	260	400	79% (450nm)
	βATA-Me	PI-3 (BTDA)	ND	385	52% (450nm)
	αATA-Me	PI-4 (ODPA)	250	400	69% (450nm)
	βΑΤΑ-Με	PI-4 (ODPA)	230	395	73% (450nm)
	αATA-Me	PI-5 (DSDA)	275	410	
	βΑΤΑ-Με	PI-5 (DSDA)	ND	380	
4	ISSDA	ISS-DACH	260	403	ND
		ISS-ADM	270	409	ND
		ISS-TFDB	258	400	ND
		ISS-TFMPD	265	409	ND
		ISS-PPD	268	409	ND
		ISS-MPD	260	403	ND
		ISS-ODA	$\frac{240}{240}$	409	ND
5	ISBA	PI(ISBA-BPDA)	257	418	
		PI(ISBA-CBDA)	276	408	80.2% (400nm)
		PI(ISBA-PMDA)	331	410	47.5% (400nm)
		PI(ISBA-BPDA)	257	418	70.1% (400nm)
		PI(ISBA-C95B5)	268	414	74.9% (400nm)

 Table S1 Comparison of thermal properties and transparency between the biobased polyimides and other reported ones in literatures

6	M1 (H)	PI-10	260	366	87% (450nm)
		PI-1F	281	<u>368</u>	83% (450nm)
	M2 (CF3)	PI-2O	240	359	85% (450nm)
		PI-2F	279	<u>363</u>	87% (450nm)
7	MAAMB	API1	247	457	89.2% (500nm)
		API2	241	448	78.1% (500nm)
		API3	262	478	63.7% (500nm)
		API4	244	476	80.9% (500nm)
	1, 4, 4'-APB	SPI1	271	507	80.3% (500nm)
		SPI2	245	521	70.1% (500nm)
		SPI3	308	520	48.3% (500nm)
		SPI4	277	521	74.0% (500nm)
	4ATA (-CH3)	PI-1m	ND	365	88.2% (450nm)
8	4ATA (- CH2CH3)	PI-1e	ND	380	86.9% (450nm)
	4ATA (-CH3)	PI-2m	ND	410	80.1% (450nm)
	4ATA (- CH2CH3)	PI-2e	ND	380	50.7% (450nm)
	4ATA (-CH3)	PI-3m	260	400	79.1% (450nm)
	4ATA (-CH3)	PI-4m	250	400	68.9% (450nm)
	4ATA (-CH3)	PI-5m	240	395	65.4% (450nm)
	4ATA (-CH3)	PI-6m	275	410	82.2% (450nm)

Computational Details

All calculations were carried out with the Gaussian 16 software. The B3LYP functional was adopted for all calculations.⁹ For geometry optimization and frequency calculations, the def2-SVP basis set¹⁰ was used, and the optimal geometry for each compound was determined. The singlet point energy calculations were performed with a larger basis set def2-TZVP basis set. The DFT-D3 dispersion correction with BJ-damping^{11,12} was applied to correct the weak interaction to improve the calculation accuracy. Orbital energy level analysis was performed by Multiwfn software.¹³ The visualization of the orbitals for the repeating units were achieved using VMD software.¹⁴

References

1. X. Jiang, Y. Long, K. Chen, Q. Yu, L. Jiang, Z. Chi, S. Liu, J. Xu and Y. Zhang, *J. Mater. Chem. C*, 2023, **11**, 1082-1094.

2. C. Gong, Z. Liu, Z. Tao, A. Xu, H. Xie, Q. Fang, Z. Qiu and Y. Yan, *ACS Sustainable Chem. Eng.*, 2023, **11**, 4789-4799.

3. T. Noda, T. Iwasaki, K. Takada and T. Kaneko, *Macromolecules*, 2021, 54, 10271-10278.

4. R. Sawada and S. Ando, *Macromolecules*, 2022, 55, 6787-6800.

5. C.-K. Chen, Y.-C. Lin, L.-C. Hsu, J.-C. Ho, M. Ueda and W.-C. Chen, *ACS Sustainable Chem. Eng.*, 2021, **9**, 3278-3288.

- 6. R. Zhang, T. Li, H. Zhou, H. Huang and Y. Chen, React. Funct. Polym., 2018, 128, 91-96.
- 7. Z. Wang, Y. Li, T. Zhu, L. Xiong, F. Liu, H. Qi, Polym. Degrad. Stabil. 2019, 167, 67-76.

8. P. Suvannasara, S. Tateyama, A. Miyasato, K. Matsumura, T. Shimoda, T. Ito, Y. Yamagata, T. Fujita,

N. Takaya and T. Kaneko, *Macromolecules*, 2014, 47, 1586-1593.

- 9. A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
- 10. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- 11. S. Grimme, S. Ehrlich and L. Goerigk, J. Comp. Chem. 2011, 32, 1456-1465.
- 12. S.Grimme, J.Antony, S.Ehrlich and H.Krieg, J. Chem. Phys. 2010, 132, 154104/
- 13. Tian Lu, Feiwu Chen, J. Comput. Chem. 2012, 33, 580-592.
- 14. Humphrey, W., Dalke, A. and Schulten, K. J. Molec. Graphics 1996, 14, 33-38.