## Valley topological phase transitions under the combined effects of electronic correlation and strain in the H-TiSeBr monolayer

Xiangjie Chen<sup>a</sup>, Yonghu Xu<sup>a</sup>, Mengran Qin<sup>a</sup>, Pei Zhang<sup>b</sup>, Zhen Gao<sup>\*a</sup>, Yao He<sup>\*a</sup> and Kai Xiong<sup>c</sup>

a Department of Physics, Yunnan University, Kunming 650091, People's Republic of China

b Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, School of Physics and Electronics, Hunan University of Science and Technology.Xiangtan 411201, Hunan, P. R. China

c Materials Genome Institute, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China

\* Authors to whom correspondence should be addressed: yhe@ynu.edu.cn, gao1323341943@163.com



FIG. S1 (a) The FM and (b) AFM configurations of the monolayer TiSeBr, (c) the energy difference between FM and AFM under different U<sub>eff</sub>, and compared with HSE06.



FIG. S2 The curie-temperature from Monte Carlo simulations.



FIG. S3 The spin-polarized band structure calculated using the hybrid functional HSE06 is shown, where the red and green curves represent spin-up and spin-down states, respectively, with the Fermi level set to zero.



FIG. S4 (a) Phonon spectrum diagrams under a strain of  $\varepsilon = -5\%$ . (b) Phonon spectrum diagrams under a strain of  $\varepsilon = 5\%$ . (c)  $E_{MAE}$  under different strains. The  $E_{FM}$  and  $E_{AFM}$  under different bixial strain. Blue represents  $E_{AFM}$ , and red represents  $E_{FM}$ .



FIG. S5 Spin-resolved energy band diagrams considering SOC under strains of (a)  $\varepsilon = -5\%$ , (b)  $\varepsilon = -3\%$ , (c)  $\varepsilon = -1.32\%$ , (d)  $\varepsilon = -1.24\%$ , (e)  $\varepsilon = -1.165\%$ , (f)  $\varepsilon = 1\%$ , (g)  $\varepsilon = 3\%$ , and (h)  $\varepsilon = 5\%$ . The spin-up and spin-down states are represented by red and green lines, respectively. The Fermi level set to



FIG. S6 Phonon spectrum diagrams under different Ueff.



FIG. S7 Spin-resolved energy band diagrams considering SOC under strains of (a)  $U_{eff} = 2.2eV$ , (b)  $U_{eff} = 2.3eV$ , (c)  $U_{eff} = 2.4eV$ , (d)  $U_{eff} = 2.5eV$ , (e)  $U_{eff} = 2.6eV$ . The spin-up and spin-down states are represented by red and green lines, respectively. The Fermi level set to 0.



FIG. S8 Spin-resolved energy band diagrams considering SOC under strains of (a) U<sub>eff</sub> = 2.7eV, (b) U<sub>eff</sub> = 2.8eV, (c) U<sub>eff</sub> = 2.9eV, (d) U<sub>eff</sub> = 3.0eV, (e) U<sub>eff</sub> = 3.1eV. The spin-up and spin-down states are represented by red and green lines, respectively. The Fermi level set to 0.



FIG. S9 Spin-resolved energy band diagrams considering SOC under strains of (a)  $U_{eff}$  = 3.2eV, (b)

 $U_{eff}$  = 3.3eV, (c)  $U_{eff}$  = 3.4eV, (d)  $U_{eff}$  = 3.5eV, (e)  $U_{eff}$  = 3.6eV. The spin-up and spin-down states

are represented by red and green lines, respectively. The Fermi level set to 0.



FIG. S10 Strain-tuned HVM and edge state energy bands under (a)-(c)  $U_{eff} = 2.2 \text{ eV}$ , (d)-(f)  $U_{eff} = 2.3 \text{ eV}$ , and (g)-(i)  $U_{eff} = 2.4 \text{ eV}$ . The spin-up and spin-down states are represented by red and green lines, respectively. The Fermi level set to 0.



FIG. S11 Strain-tuned HVM and edge state energy bands under (a)-(c)  $U_{eff} = 2.2 \text{ eV}$ , (d)-(f)  $U_{eff} = 2.3 \text{ eV}$ , and (g)-(i)  $U_{eff} = 2.4 \text{ eV}$ . The spin-up and spin-down states are represented by red and green lines, respectively. The Fermi level set to 0.



FIG. S12 Strain-tuned HVM and edge state energy bands under (a)-(c) U<sub>eff</sub> = 2.2 eV, (d)-(f) U<sub>eff</sub> = 2.3 eV, and (g)-(i) U<sub>eff</sub> = 2.4 eV. The spin-up and spin-down states are represented by red and green lines, respectively. The Fermi level set to 0.



FIG. S13 Strain-tuned HVM and edge state energy bands under (a)-(c)  $U_{eff} = 3.1 \text{ eV}$ , (d)-(f)  $U_{eff} = 3.2 \text{ eV}$ , and (g)-(i)  $U_{eff} = 3.3 \text{ eV}$ . The spin-up and spin-down states are represented by red and green lines, respectively. The Fermi level set to 0.



FIG. S14 Strain-tuned HVM and edge state energy bands under (a)-(c)  $U_{eff} = 3.4 \text{ eV}$ , (d)-(f)  $U_{eff} = 3.5 \text{ eV}$ , and (g)-(i)  $U_{eff} = 3.6 \text{ eV}$ . The spin-up and spin-down states are represented by red and green lines, respectively. The Fermi level set to 0.