Scalable all-polymer dielectric films with aligned structures

for high-temperature energy storage applications

Xin Zhen,^a Jian Wang,^a Xinhui Li,^a Yanda Jiang,^a Zhi Li,^a Zhonghui Shen, ^a and Xin Zhang^{*a}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices& International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China. E-mail: zhangxin@whut.edu.cn

*Corresponding authors E-mail: zhang-xin@whut.edu.cn

Parameter	Values	Units	
Schottky barrier	1.25	eV	
Trap depth	0.2	eV	
Charge mobility of PEI	$1 imes 10^{-12}$	$cm^2/(V \cdot s)$	
Charge mobility of PVDF	$1 imes 10^{-8}$	$cm^2/(V \cdot s)$	
Electric field	100	MV/m	
Temperature	423	К	

Table. S1 Definition of parameters used in this simulation.

Fig. S1 The load-displacement curves for all-organic composite films with different PEI/PVDF components.

Fig. S2 Weibull breakdown characteristics of all-organic composite films with different PEI/PVDF components at room temperature.

Fig. S3 Variation of leakage current density with the applied electric field at a) room temperature and b) 150 °C.

Fig. S4 The dependence of dielectric constant-loss of all-organic composite films with different PEI/PVDF components on frequency.

Fig. S5 Variation of dielectric constant and breakdown strength as a function of different PEI/PVDF components at 1 kHz and 150 °C.

Fig. S6 *D-E* loops of all-organic composite films with different PEI/PVDF components at a) room temperature and b) 150 °C.

Fig. S7 Variation of energy storage density and charge-discharge efficiency with the applied external electric field at room temperature.

Fig. S8 The SEM images with fibers of diameters a) 200 nm, b) 500 nm, c) 1 μm and d) 1.5 μm

Fig. S9 Schematic illustration of films with different fiber diameters 1.5 μ m, b) 1 μ m, c) 500 nm and d) 200 nm

Fig. S10 Stress-strain curves of composite films loaded with different fiber diameters of 5 vol.% PEI/PVDF

Fig. S11 The load-displacement curves for different fiber diameters of 5 vol.% PEI/PVDF

Fig. S12 Variation of leakage current density with the applied electric field at 150 °C

Fig. S13 Schematic illustration of the interfacial polarization mechanism

Fig. S14 D-E loops of films with different fiber diameters of 5 vol.% PEI/PVDF at 150 °C

polymer-based dielectrics and the r El/r v Dr composite in this work.				
Composites	$U_{\rm d}$ (J/cm ³)	η (%)	$E_{\rm b}$ (kV/mm)	\mathcal{E}_{r}
PEI/PVDF (this	9.39	>90	711	4.44
work)			/11	7.77
PEI/PCBM ¹	4.5	>90	~550	~3.5
POFNB ²	5.7	~77	~686	2.5
ITIC/PEI ³	6.37	>90	560	3.2
o-POFNB ⁴	8.3	~83	~800	~2.88
CS-ODA ⁵	7.02	>90	641.7	3.53
PC-BN-SiO ₂ ⁶	5.22	~76	610	~3.0
PEI-Al ₂ O ₃ ⁷	3.5	>90	636.4	~3.1
F-PI/PCBM ⁸	6.39	>90	815	2.99
PI-PAA/BNNS9	7.4	~47	527	4.05
PEEU-Al ₂ O ₃ ¹⁰	5	90	600	7.4
NTCDA/PEI ¹¹	5.1	90	630	~3.2
ITIC-PI@PEI ¹²	4	~63	505	~3.27

Table. S2 The dielectric and energy storage properties at 150 °C of previously published polymer-based dielectrics and the PEI/PVDF composite in this work.

References

- C. Yuan, Y. Zhou, Y. Zhu, J. Liang, S. Wang, S. Peng, Y. Li, S. Cheng, M. Yang, J. Hu, B. Zhang, R. Zeng, J. He and Q. Li, *Nat. Commun.*, 2020, 11, 3919.
- 2 C. Wu, A. A. Deshmukh, Z. Li, L. Chen, A. Alamri, Y. Wang, R. Ramprasad, G. A. Sotzing and Y. Cao, *Adv. Mater.*, 2020, **32**, 2000499.
- 3 M. Feng, Y. Feng, C. Zhang, T. Zhang, Q. Chen and Q. Chi, *Mater. Horiz.*, 2022, 9, 3002–3012.
- 4 A. A. Deshmukh, C. Wu, O. Yassin, A. Mishra, L. Chen, A. Alamri, Z. Li, J. Zhou, Z. Mutlu, M. Sotzing, P. Rajak, S. Shukla, J. Vellek, M. A. Baferani, M. Cakmak, P. Vashishta, R. Ramprasad, Y. Cao and G. Sotzing, *Energy Environ. Sci.*, 2022, **15**, 1307–1314.
- 5 Z. Pan, L. Li, L. Wang, G. Luo, X. Xu, F. Jin, J. Dong, Y. Niu, L. Sun, C. Guo, W. Zhang, Q. Wang and H. Wang, *Adv. Mater.*, 2023, **35**, 2207580.
- 6 G. Liu, Q. Lei, Y. Feng, C. Zhang, T. Zhang, Q. Chen and Q. Chi, InfoMat, 2023, 5, e12368.
- 7 S. Cheng, Y. Zhou, Y. Li, C. Yuan, M. Yang, J. Fu, J. Hu, J. He and Q. Li, *Energy Storage Mater.*, 2021, **42**, 445–453.
- 8 W. Ren, M. Yang, L. Zhou, Y. Fan, S. He, J. Pan, T. Tang, Y. Xiao, C.-W. Nan and Y. Shen, *Adv. Mater.*, 2022, **34**, 2207421.
- 9 Z. Dai, Z. Bao, S. Ding, C. Liu, H. Sun, H. Wang, X. Zhou, Y. Wang, Y. Yin and X. Li, Adv. Mater., 2022, 34, 2101976.
- 10 T. Zhang, X. Chen, Y. Thakur, B. Lu, Q. Zhang, J. Runt and Q. M. Zhang, *Sci. Adv.*, 2020, 6, eaax6622.
- 11 B. Zhang, X. Chen, Z. Pan, P. Liu, M. Mao, K. Song, Z. Mao, R. Sun, D. Wang and S. Zhang, *Adv. Funct. Mater.*, 2023, **33**, 2210050.
- 12 M. Feng, Y. Feng, C. Zhang, T. Zhang, X. Tong, Q. Gao, Q. Chen and Q. Chi, *Energy Environ. Mater.*, 2024, 7, e12571.