Supporting Information

Light-Assisted Schottky Barrier Enhancement for Selective Detection of L-

Cysteine using Ni/Cu₂O/Ag nanocubes

Xiangyang Chen[#], Zhensen Liang [#], Aodi Hu [#], Minggang Zhao* School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China *Email: <u>zhaomg@ouc.edu.cn</u> #Contribute equally to the work.

Table of contents

1.	Synthesis of Cu ₂ O/Ag nanocube composites	2
2.	EDS and XRD	3
4.	Cyclic voltammetry (CV) of Ni/Cu ₂ O/Ag electrode in potassium ferrocyanide	5
5.	Electrochemical impedance spectra (EIS) of Ni/Cu ₂ O and Ni/Cu ₂ O/Ag electrodes	6
6.	DPV response of Ni/Cu ₂ O/Ag electrode to L-Cys at pH 5.05	7
7.	DPV response of Ni/Cu ₂ O or Ni/Ag to L-Cys at pH 3.0 or 7.0	8

1. Synthesis of Cu_2O/Ag nanocube composites

Figure S1 Synthesis of Cu_2O/Ag nanocube composites

2. EDS and XRD

Figure S2 (a) Element mapping images and (b) SEM-EDS spectrum of the Cu_2O/Ag nanocube composite (c) XRD spectra of Cu_2O/Ag and Cu_2O nanocube.

3. XPS spectra of Cu_2O/Ag nanocubes

Figure S3 High-resolution XPS spectra of O 1s (a), Cu 2p (b) and Ag 3d (c) of Cu_2O/Ag nanocubes.

Cyclic voltammetry (CV) of Ni/Cu₂O/Ag electrode in potassium ferrocyanide

Figure S4 CV curves of Ni/Cu₂O/Ag electrode in 0.1 M KCl and 5.0 mM potassium ferrocyanide solution at different scan rates (10, 20, 30, 40, 50 and 60 mV/s). Inset is the plot of anodic peak current versus the square root of scan rate ($r^{1/2}$).

5. Electrochemical impedance spectra (EIS) of Ni/Cu₂O and Ni/Cu₂O/Ag electrodes

Figure S5 Electrochemical impedance spectra (EIS) of Ni/Cu₂O and Ni/Cu₂O/Ag electrodes in 0.1 M KCl and 5.0 mM potassium ferrocyanide solution. Frequency: 10^{-1} - 10^{5} Hz.

6. DPV response of Ni/Cu₂O/Ag electrode to L-Cys at pH 5.05

Figure S6 (a) DPV curves of the Ni/Cu₂O/Ag electrode to different concentrations of L-Cys in PBS at pH = 5.05; (b) The corresponding linear calibration of peak current versus L-Cys concentrations.

7. DPV response of Ni/Cu₂O or Ni/Ag to L-Cys at pH 3.0 or 7.0

Figure S7 DPV current response of Ni/Cu₂O electrode, added 1 μ A L-Cys to 0.1 nM PBS solution at (a) pH=3.0 and (b) pH=7.0; Ni/Ag electrode, added 1 μ A L-Cys DPV current response to 0.1 nM PBS solution at (c) pH=3.0 and (d) pH=7.0.