Supporting Information

Nb₂CT_x MXene Integrated DyMn₂O₅ Composites: Tailored Particle Size and Enhanced Capacitance for High-Performance Pseudocapacitor

Komal Ali Rao^{1*}, Muhammad Ehsan Mazhar¹, Javed Ahmad¹, Muhammad Bilal², Muhammad Imran Khan³, Muhammad Suleman Ahmad¹, Muhammad Aziz¹, Hafeez ur Rehman⁴,

¹Institute of Physics Bahauddin Zakariya University, Multan-60800, Pakistan; email:

komalrao49@gmail.com,

²School of Engineering and Materials Science, Queen Marry University of London-E1 4NS, UK;

³Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah 27272,

United Arab Emirates;

⁴ Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.

1. Material Characterization

The structural characterization of the synthesized materials $(DyMn_2O_5/Dy_2O_3)$ and $DyMn_2O_5/Dy_2O_3/MX$ ene) was conducted using an advanced X-ray diffractometer (Bruker-D8) equipped with a CuK α radiation source ($\lambda = 1.5407$ Å), operating at 40 kV and 35 mA. Data were collected over a 2 θ range of 20°–80° with a scanning rate of 1.5°/min. Fourier Transform Infrared (FT-IR) spectroscopy was performed using a Thermo Scientific Nicolet 6700 spectrometer within the 400–4000 cm⁻¹ range (4 cm⁻¹ resolution, 256 scans) to qualitatively analyze the chemical composition and identify functional groups present in the composites. The

surface morphology of the synthesized materials was examined using a scanning electron microscope (SEM, MAIA3 XMH, Model 2016). Electrochemical performance was evaluated via cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) using a three-electrode setup on a Metrohm Autolab 302-N electrochemical workstation. All electrochemical measurements were carried out at room temperature in a 3M KOH aqueous electrolyte, with instrument control and data acquisition managed through Nova 2.1 software.

Figure S1.(a) W-H plot for $DyMn_2O_5 / Dy_2O_3$ (b) W-H plot for composite $DyMn_2O_5 / Dy_2O_3$ /MXene (c) Modified W-H plot for base $DyMn_2O_5 / Dy_2O_3$ (d) Modified W-H plot for composite $DyMn_2O_5 / Dy_2O_3$ /MXene

Table S1 Specific capacitance at different scan rate

Sr.No.	Scan rate (mVs ⁻ ¹)	Potential Window (ΔV)	Specific Capacitance of MXene	Specific Capacitance of DyMn ₂ O ₅ /Dy ₂ O ₃ (Fg ⁻¹)	Specific Capacitance of DyMn ₂ O ₅ /Dy ₂ O ₃ /MXene (Fg ⁻¹)
1	10	0.6	105.90	703.97	863.01
2	20	0.6	61.13	394.5	629.3
3	30	0.6	50.24	285.9	530.2
4	40	0.6	44.30	241.0	413.9
5	50	0.6	39.10	208.6	368.0
6	100	0.6	23.92	130.6	213.9

Table S2 Specific capacity calculated from GCD

Sr. No	Current density (A/g)	Potential Window (ΔV)	Specific Capacityof DyMn ₂ O ₅ /Dy ₂ O ₃ /MXene (Cg ⁻¹)
1	1	0.5	362.92
2	2	0.5	293.78
3	3	0.5	242.43
4	4	0.5	223.44
5	5	0.5	189.55
6	10	0.5	99.21
7	20	0.5	96.40