Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supporting Information

The Experimental Phase Equilibria Studies of the Fe-Sb-As System

Modassir Akhtar*, Maksym Shevchenko, Svetlana Sineva, Evgueni Jak

Pyrometallurgy Innovation Centre (PYROSEARCH), School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia

*Corresponding author: <u>m.akhtar@uq.edu.au</u>

S1 The industrial applications of the Fe-Sb-As system

Peterson and Twidwell ¹ reported the removal of arsenic by roasting with pyrite from Sb-As containing lead bullion was reported. Filippou et al. ² reported 6 wt.% Sb in enargite (Cu₃As_{0.8}Sb_{0.2}S₄), a key mineral in coppergold deposits. They also reported high As-containing minerals can be separated into two types of feed (As-rich and As-lean but rich in precious metals) by adjusting pulp-potential ².

In new pyrometallurgical technology, As- and Sb-rich feeds are treated to sulfidization roasting under reducing conditions, halogenation, and carbothermic reduction to form copper arsenide ². Nazari et al. ³ identified the presence of As with Sb in minerals like arsenopyrite, oliverite, which are undesirable during copper extraction. These are removed via volatilization to improve crude Cu and sulfuric acid production from released SO₂. They also reported that arsenic can be removed as ferric arsenate ³.

Nshimiyimana et al. ⁴ identified Fe-Sb-As-containing arsenopyrite ($Fe_{0.95}Co_{0.05}$)($As_{0.97}Sb_{0.01}$)S and freibergite ($Ag_{5.7}Cu_{4.6}Fe_{1.8}$)($Sb_{3.9}As_{0.2}$)S₁₃ minerals. Majzlan et al. ⁵ reported As-Sb and Fe-Sb-As components in trombolite and tetrahedrite (Cu,Fe,Zn)₁₂(Sb,As)₄S₁₃, respectively. Jurkovic ⁶ observed Fe-Sb-As metals in different minerals, including As-Sb bearing goethite (α -FeOOH), As-bearing tripuhyite (FeSbO₄), senarmontite (Sb_2O_3), and cervantite (Sb_2O_4) in soils.

Zhang et al.⁷ noted that Fe-Sb-As metals in acid mine drainage, caused by minerals exploration and utilization, rigorously contaminate ecological environments. They also reported that As-containing slag poses ecological risks, which can be mitigated by forming stable As phases during pyrometallurgical operations ⁸. During Sn smelting, the slag contained around 10-15 wt.% Sb and 1-3 wt.% As. As-Sb dust contains 0.5–1% As and 2–4% Sb.

S2. The Fe-As system

Friedrich ⁹ used thermal analysis and microscopy and determine the phase diagram from the compositions of 6-49 at. % As. Oberhoffer and Gallaschik ¹⁰ used thermal analysis, microscopy, and magnetic content analysis to determination the phase diagram from 0-32 at. % As and magnetic transition. Jones ¹¹ measured diffusion of arsenic in iron and determine the saturation composition of iron (FCC) at 1423 K. Svechnikov and Gridnev ¹² used a dilatometry, microscopy, and XRD to determine limits of the iron (FCC) saturation loop. Sawamura and Mori ¹³ used thermal analysis and microscopy and reported the solubility of arsenic in iron (FCC) based on extrapolations from measurements made on alloys of iron and arsenic containing low concentrations of carbon. Sawamura et al.¹⁴ used a DTA to determine the phase diagram between 40 to 57 at. % As. Svechnikov and Shurin ¹⁵ used thermal analysis, microscopy, and XRD to determine the limits of the solubility of arsenic in iron (FCC). Svechnikov et al. ¹⁶ used microhardness, microscopy and XRD to determine the solid solubility of arsenic in iron (FCC). Clark ¹⁷ used DTA, optical microscopy and XRD to study the Fe-As system. Clark ¹⁸ used optical microscopy and XRD to study the Fe-As system. Clark ¹⁸ used optical microscopy and XRD to study the Fe-As system. Predel and Frebel ¹⁹ used DTA to determine the solid solubility of arsenic in iron (BCC). Bozic ²⁰ used thermal analysis to determine the maximum solid solubility of arsenic in iron (BCC) at the eutectic temperature. Pei et al. ²¹ and Kidari and Chartrand ²² thermodynamically assessed the

Fe-As system. Ugai et al. ²³ used DTA and XRD and reported the pressure-temperature-composition diagram for the Fe-As system for 0.50-1.0 at. % As.

(c) Fe(As, Sb) liquidus (Sample 30-61)

(i) Boundary between Fe(As, Sb) and Fe(As, Sb)₂ primary phase fields (Sample 88-92)

Figure S1 Microstructures for the Fe-Sb-As systems in the same chronological order with phases given in Table S1.

Figure S2 Microstructures for the Fe-As systems in the same chronological order given in Table S2.

Figure S3 Microstructures for the Fe-Sb systems in the same chronological order given in Table S3.

Table S1 Measured composition of the phases (average values and standard deviation) in the Fe-Sb-As system, expressed in mol.% with SiO_2 substrate of each phase equilibrated at fixed temperature and fixed first preheating at 600 °C for 1 h to all arsenic containing samples with or without second preheating.

S.	Preheat 2	Equilib	ration	Phase	Nor	malized mo	I. %	Unnormalized
no.	(°C/h)	T (°C)	t (h)		Fe	Sb	As	(wt.%)
(a) B0	CC-Fe liqui	dus		•				
1	-	1000	7	Liquid metal	68.4 ± 0.2	28.3 ± 0.2	3.4 ± 0.0	100.33
				BCC-Fe	94.1 ± 0.1	4.0 ± 0.0	1.9 ± 0.1	100.20
2	-	1000	4.75	Liquid metal	69.7 ± 0.1	24.4 ± 0.1	5.9 ± 0.1	100.33
				BCC-Fe	93.6 ± 0.0	3.1 ± 0.0	3.3 ± 0.0	100.32
3	-	950	4	Liquid metal	71.0 ± 0.2	16.5 ± 0.2	12.5 ± 0.2	100.33
				BCC-Fe	92.5 ± 0.0	1.9 ± 0.0	5.6 ± 0.0	100.36
(b) M	$eX = Fe_{1+x}($	Sb, As) li	quidus	1				
4	-	1000	6	Liquid metal	65.2 ± 0.7	30.9 ± 0.9	4.0 ± 0.2	100.38
				MeX	59.1 ± 0.2	39.3 ± 0.2	1.6 ± 0.1	99.72
5	-	950	5.5	Liquid metal	39.7 ± 2.3	55.6 ± 2.5	4.7 ± 0.3	100.12
				MeX	54.4 ± 0.2	41.2 ± 0.2	4.4 ± 0.1	99.92
6	-	950	5.5	Liquid metal	43.0 ± 0.9	26.4 ± 1.5	30.6 ± 0.7	100.06
				MeX	53.8 ± 0.1	6.2 ± 0.1	40.0 ± 0.2	100.21
7	-	950	6	Liquid metal	68.5 ± 0.5	18.2 ± 0.7	13.3 ± 0.7	100.26
				MeX	57.9 ± 0.1	35.4 ± 0.1	6.7 ± 0.0	100.07
8	-	950	4.25	Liquid metal	48.7 ± 1.2	38.1 ± 1.4	13.1 ± 0.3	100.09
				MeX	55.4 ± 0.2	31.0 ± 0.2	13.6 ± 0.1	100.29
9	-	950	4.25	Liquid metal	43.9 ± 0.9	47.1 ± 1.1	9.0 ± 0.2	100.17
			_	MeX	55.0 ± 0.2	34.7 ± 0.1	10.3 ± 0.1	99.65
10	_	950	12.25	Liquid metal	48.8 ± 0.7	20.8 ± 1.0	30.4 ± 0.4	100.31
				MeX	55.0 ± 0.1	10.2 ± 0.1	34.8 ± 0.1	100.18
11	1000/0.5	925	19.75	Liquid metal	38.7 ± 0.4	48.4 ± 0.6	12.9 ± 0.3	100.29
				MeX	55.1 ± 0.2	24.1 ± 0.1	20.8 ± 0.1	100.17
12	1000/0.5	925	20	Liquid metal	39.1 ± 0.6	37.6 ± 1.0	23.4 ± 0.4	100.16
				MeX	54.8 ± 0.1	11.9 ± 0.1	33.3 ± 0.1	100.26
13	1000/0.5	925	20.75	Liquid metal	28.1 ± 1.0	47.5 ± 1.5	24.4 ± 0.6	100.28
				MeX	52.9 ± 0.1	7.3 ± 0.0	39.8 ± 0.1	100.32
14	-	925	25.5	Liquid metal	42.1 ± 0.4	40.0 ± 0.5	18.0 ± 0.4	100.13
				MeX	55.3 ± 0.1	20.7 ± 0.1	24.0 ± 0.1	100.30
15	1000/0.5	900	4	Liquid metal	27.0 ± 0.8	64.5 ± 1.4	8.5 ± 0.8	100.16
				MeX	55.0 ± 0.5	24.0 ± 0.3	21.0 ± 0.2	100.11
16	1000/0.5	900	15	Liquid metal	20.1 ± 0.9	65.8 ± 1.4	14.2 ± 0.6	100.13
				MeX	53.8 ± 0.1	10.7 ± 0.1	35.5 ± 0.1	100.22
17	1000/0.5	900	6	Liquid metal	29.5 ± 1.0	67.6 ± 1.0	2.9 ± 0.1	100.23
				MeX	53.6 ± 0.2	41.9 ± 0.2	4.5 ± 0.1	100.38
18	1000/0.5	900	20	Liquid metal	66.0 ± 0.2	8.8 ± 0.2	25.2 ± 0.1	100.35
				MeX	59.0 ± 0.1	19.0 ± 0.1	22.1 ± 0.1	100.20
19	1000/0.5	850	12	Liquid metal	21.6 ± 2.3	71.9 ± 3.3	6.5 ± 1.0	100.21
				MeX	53.8 ± 0.1	25.7 ± 0.3	20.5 ± 0.3	100.09
20	950/0.5	850	15	Liquid metal	14.5 ± 0.7	76.6 ± 1.2	8.9 ± 0.6	100.29
				MeX	53.0 ± 0.1	14.8 ± 0.2	32.2 ± 0.1	100.19
21	1000/0.5	850	8	Liquid metal	12.8 ± 0.7	77.4 ± 1.0	9.7 ± 0.9	100.39
			_	MeX	52.5 ± 0.1	9.8 ± 1.2	37.7 ± 1.2	100.12
22	1000/0.5	850	6.5	Liquid metal	13.1 ± 0.7	77.3 ± 1.1	9.6 ± 0.5	100.29
				MeX	53.0 ± 0.1	11.7 ± 0.1	35.3 ± 0.0	100.34

23	1000/0.5	850	13.5	Liquid metal	22.6 ± 0.7	74.9 ± 0.7	2.5 ± 0.1	99.84
				MeX	53.7 ± 0.1	39.4 ± 0.1	6.9 ± 0.1	100.09
24	1000/0.5	850	21	Liquid metal	22.2 ± 0.8	74.6 ± 0.8	3.2 ± 0.1	99.77
				MeX	53.7 ± 0.1	39.7 ± 0.1	6.6 ± 0.0	100.26
25	900/0.5	800	13	Liquid metal	13.8 ± 0.7	82.7 ± 1.0	3.5 ± 0.3	100.26
				MeX	53.1 ± 0.1	26.6 ± 0.6	20.2 ± 0.5	100.24
26	-	800	11	Liquid metal	9.3 ± 2.1	84.9 ± 2.5	5.8 ± 1.7	100.15
				MeX	52.2 ± 0.4	21.1 ± 0.7	26.7 ± 1.1	100.34
27	1000/0.5	800	6	Liquid metal	16.9 ± 1.2	81.2 ± 1.3	1.9 ± 0.1	100.20
				MeX	53.2 ± 0.2	42.4 ± 0.1	4.5 ± 0.1	100.24
28	1000/0.5	750	43	Liquid metal	9.7 ± 0.2	88.2 ± 0.2	2.1 ± 0.1	100.22
				MeX	52.4 ± 0.1	31.3 ± 0.2	16.3 ± 0.3	100.26
29	1000/0	750	6	Liquid metal	8.0 ± 0.6	89.2 ± 0.8	2.8 ± 0.3	100.43
				MeX	52.4 ± 0.1	22.2 ± 0.5	25.4 ± 0.5	100.33
(c) Fe	(As, Sb) liq	uidus				1		
30	-	1000	5	Liquid metal	39.4 ± 0.7	13.3 ± 1.2	47.3 ± 1.2	100.42
				FeAs	49.4 ± 0.1	0.43 ± 0.01	50.2 ± 0.1	100.98
31	-	975	7	Liquid metal	27.5 ± 1.0	28.3 ± 1.4	44.2 ± 0.6	100.17
				FeAs	50.2 ± 0.1	0.06 ± 0.01	49.7 ± 0.1	100.72
32	-	975	4.5	Liquid metal	42.5 ± 0.7	20.3 ± 1.0	37.2 ± 0.5	100.30
				FeAs	50.5 ± 0.1	0.94 ± 0.11	48.6 ± 0.1	100.84
33	-	975	6.5	Liquid metal	27.5 ± 0.8	31.9 ± 1.2	40.6 ± 0.9	100.09
				FeAs	50.1 ± 0.2	0.15 ± 0.01	49.8 ± 0.2	100.04
34	-	975	5	Liquid metal	30.5 ± 0.6	32.8 ± 0.9	36.7 ± 0.5	100.31
				FeAs	49.6 ± 0.1	0.90 ± 0.02	49.6 ± 0.1	100.86
35	-	975	5	Liquid metal	28.7 ± 2.8	22.9 ± 3.7	48.3 ± 1.4	100.32
				FeAs	49.5 ± 0.1	0.39 ± 0.02	50.1 ± 0.1	100.79
36	1000/0.5	950	20.5	Liquid metal	34.1 ± 0.7	35.7 ± 1.1	30.3 ± 0.6	100.18
	1000/0 5	0.50		FeAs	49.0 ± 0.2	1.5 ± 0.0	49.5 ± 0.2	100.09
37	1000/0.5	950	21.5	Liquid metal	19.0 ± 1.3	42.6 ± 2.2	38.4 ± 1.0	100.31
20	1000/0.5	0.50	- 21	FeAs	49.5 ± 0.2	0.55 ± 0.01	50.0 ± 0.2	100.68
38	1000/0.5	950	21	Liquid metal	20.3 ± 1.4	45.7 ± 2.2	34.1 ± 0.8	100.34
20		050	5	FeAs	49.5 ± 0.1	0.73 ± 0.01	49.8 ± 0.1	100.38
39	-	950	5	Liquid metal	21.4 ± 0.7	46.4 ± 1.1	32.2 ± 0.4	100.42
40	1000/0 5	050	22	FeAs	49.7 ± 0.1	0.83 ± 0.02	49.3 ± 0.1	100.84
40	1000/0.5	950	22	Liquid metal	21.8 ± 2.1	46.4 ± 3.8	31.8 ± 1.8	100.22
41		050	5 75	FeAs	49.8 ± 0.2	0.87 ± 0.02	49.3 ± 0.2	100.30
41	-	930	5.75	Equid metal	28.3 ± 1.8	42.4 ± 3.4	29.3 ± 1.8	100.13
12		050	5 75	FeAs	30.1 ± 0.1	0.80 ± 0.03	49.1 ± 0.1	100.20
42	-	930	5.75	Equid metal	10.0 ± 1.7	37.7 ± 1.3	43.3 ± 3.0 50.0 ± 0.1	100.37
12		050	5 25	Liquid motal	49.7 ± 0.1 10.8 \pm 1.1	0.33 ± 0.02	30.0 ± 0.1 48.1 ± 2.1	100.93
43	-	950	5.25	Equila metai	19.0 ± 1.1 40.2 ± 0.1	32.1 ± 2.0	40.1 ± 2.1 50 2 \pm 0 1	100.44
11		025	5.5	Liquid metal	$\frac{49.3 \pm 0.1}{26.6 \pm 0.8}$	10.38 ± 0.03	30.3 ± 0.1 23.6 ± 0.6	100.33
	-	125	5.5	Elquid metal FeAs	20.0 ± 0.0 49.8 ± 0.4	13+00	23.0 ± 0.0 49.0 ± 0.4	100.32
45		925	6	I jouid metal	10.8 ± 0.9	1.5 ± 0.0 53 7 + 0.8	$\frac{47.0 \pm 0.4}{35.5 \pm 0.7}$	100.47
	-	125	0	Fede	10.0 ± 0.9 50 0 + 0 1	0.00 + 0.00	50.0 ± 0.7	100.31
46		925	5	Liquid metal	13.6 ± 0.1	643 ± 0.00	22.0 ± 0.1	100.09
	-	125	5	Fede	502 ± 0.3	0.56 ± 0.9	49.2 ± 0.3	100.22
47	1000/0 5	925	20.75	Liquid metal	18.3 ± 0.2	62.5 ± 0.05	19.2 ± 0.2 19.2 ± 0.9	100.23
.,	1000/010	/	20.70	FeAs	50.0 ± 0.1	1.7 ± 0.3	48.3 ± 0.3	100.22
48	1000/0.5	925	20	Liquid metal	12.3 ± 0.8	62.5 ± 1.1	25.3 ± 0.6	100.40
				FeAs	49.6 ± 0.1	0.79 ± 0.02	49.6 ± 0.1	100.82

49	1000/0.5	925	19.75	Liquid metal	10.8 ± 0.6	50.7 ± 1.1	38.5 ± 0.8	100.30
				FeAs	49.8 ± 0.1	0.37 ± 0.01	49.9 ± 0.1	100.21
50	1000/0.5	900	14	Liquid metal	17.2 ± 0.5	67.3 ± 0.9	15.5 ± 0.5	100.10
				FeAs	49.7 ± 0.1	1.9 ± 0.1	48.4 ± 0.1	100.33
51	950/0.5	900	58	Liquid metal	7.7 ± 0.6	72.0 ± 1.2	20.3 ± 0.7	100.05
				FeAs	49.8 ± 0.1	0.80 ± 0.04	49.4 ± 0.1	99.97
52	1000/0.5	900	21	Liquid metal	9.0 ± 0.7	73.0 ± 1.4	18.0 ± 0.7	100.09
				FeAs	49.7 ± 0.2	0.89 ± 0.02	49.5 ± 0.2	100.76
53	-	850	36	Liquid metal	5.3 ± 0.3	79.8 ± 0.7	14.9 ± 0.4	100.18
				FeAs	49.8 ± 0.1	0.61 ± 0.03	49.6 ± 0.1	100.34
54	1000/0.5	850	8	Liquid metal	6.5 ± 0.9	80.6 ± 1.8	12.9 ± 0.9	100.23
				FeAs	49.8 ± 0.1	1.1 ± 0.1	49.1 ± 0.1	100.67
55	-	800	10	Liquid metal	2.8 ± 0.4	82.8 ± 0.9	14.5 ± 0.6	100.26
				FeAs	49.4 ± 0.2	0.36 ± 0.04	50.3 ± 0.2	100.74
56	1000/0.5	800	4.5	Liquid metal	2.4 ± 0.3	82.1 ± 0.5	15.5 ± 0.3	100.32
				FeAs	49.0 ± 0.1	0.61 ± 0.06	50.4 ± 0.2	100.30
57	1000/0.5	800	11.5	Liquid metal	5.5 ± 0.6	86.3 ± 1.4	8.2 ± 0.8	100.32
				FeAs	49.9 ± 0.1	1.4 ± 0.3	48.7 ± 0.2	100.62
58	850/0.5	750	56	Liquid metal	1.2 ± 0.2	86.4 ± 0.7	12.4 ± 0.7	99.66
				FeAs	49.7 ± 0.1	0.35 ± 0.08	49.9 ± 0.1	100.48
59	1000/0.5	750	12.5	Liquid metal	3.8 ± 0.2	91.6 ± 0.3	4.6 ± 0.2	100.43
				FeAs	49.8 ± 0.1	1.1 ± 0.1	49.1 ± 0.2	101.00
60	1000/0.5	700	13.5	Liquid metal	1.4 ± 0.1	92.4 ± 0.2	6.2 ± 0.1	100.28
				FeAs	49.5 ± 0.2	0.60 ± 0.30	49.9 ± 0.3	100.65
61	1000/0.5	650	10.25	Liquid metal	1.3 ± 0.1	95.2 ± 0.1	3.5 ± 0.1	100.15
				FeAs	50.1 ± 0.2	0.66 ± 0.23	49.3 ± 0.2	100.36
(d) Fe	(As, Sb) ₂ li	quidus						
62	-	900	5.5	Liquid metal	6.7 ± 0.5	58.8 ± 0.9	34.4 ± 0.9	100.29
				FeAs ₂	33.3 ± 0.1	1.2 ± 0.1	65.5 ± 0.2	101.00
63	1000/0.5	850	19	Liquid metal	3.9 ± 0.6	72.0 ± 1.3	24.1 ± 0.9	100.36
				FeAs ₂	32.9 ± 0.1	1.3 ± 0.2	65.8 ± 0.2	100.13
64	1000/0.5	850	36.5	Liquid metal	2.7 ± 0.3	65.3 ± 0.8	32.1 ± 0.5	100.29
				FeAs ₂	33.2 ± 0.2	0.92 ± 0.22	65.9 ± 0.2	100.91
65	1000/0.5	850	18.5	Liquid metal	3.4 ± 0.3	70.8 ± 0.7	25.8 ± 0.4	100.12
				FeAs ₂	33.2 ± 0.1	0.85 ± 0.13	65.9 ± 0.2	100.91
66	-	850	42	Liquid metal	2.8 ± 0.1	66.5 ± 0.4	30.7 ± 0.3	100.42
				FeAs ₂	33.6 ± 0.1	0.77 ± 0.05	65.7 ± 0.2	100.05
67	1000/0.5	800	14	Liquid metal	2.0 ± 0.2	79.7 ± 0.5	18.2 ± 0.4	100.17
				FeAs ₂	32.8 ± 0.1	1.3 ± 0.2	65.9 ± 0.1	100.25
68	1000/0.5	800	36.5	Liquid metal	1.1 ± 0.1	68.9 ± 0.4	30.1 ± 0.4	99.83
				FeAs ₂	33.5 ± 0.1	0.80 ± 0.23	65.7 ± 0.3	100.53
69	1000/0.5	800	13.5	Liquid metal	1.8 ± 0.5	76.5 ± 0.6	21.7 ± 0.3	100.42
				FeAs ₂	32.8 ± 0.2	1.0 ± 0.2	66.1 ± 0.3	101.02
70	-	800	16	Liquid metal	1.0 ± 0.8	66.6 ± 0.8	32.5 ± 0.6	99.87
				FeAs ₂	33.1 ± 0.1	0.44 ± 0.02	66.4 ± 0.1	100.99
71	1000/0.5	800	6.5	Liquid metal	1.1 ± 0.1	70.5 ± 0.3	28.3 ± 0.2	100.25
	1005/5		• -	FeAs ₂	33.4 ± 0.4	0.99 ± 0.82	65.6 ± 0.4	100.38
72	1000/0.5	750	39	Liquid metal	1.1 ± 0.2	85.3 ± 0.6	13.6 ± 0.4	100.16
	0.50/0.5			FeAs ₂	33.3 ± 0.1	1.4 ± 0.1	65.3 ± 0.1	100.51
73	⊢ <u>850/0 5</u>	750	13	Liquid metal	$10.60 \pm$	$+78.0\pm0.3$	$ 21.4 \pm 0.2 $	99.62
	050/0.5	750	15		0.11			
	850/0.5	750	15	FeAs ₂	0.11 33.6 ± 0.2	0.26 ± 0.19	66.1 ± 0.2	100.67

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		n.				0.07			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					FeAs ₂	33.4 ± 0.1	0.62 ± 0.39	66.0 ± 0.4	100.86
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	75	1000/5mi	700	14.5	Liquid metal	0.94 ±	90.7 ± 0.1	8.3 ± 0.1	100.33
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		n.				0.11			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					FeAs ₂	33.5 ± 0.1	1.8 ± 0.3	64.7 ± 0.3	99.99
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	76	1000/0.5	700	11.5	Liquid metal	0.36 ±	78.9 ± 0.3	20.7 ± 0.2	100.14
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						0.08			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					FeAs ₂	33.2 ± 0.0	1.1 ± 0.5	65.7 ± 0.5	100.41
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	77	800/0.5	700	14.25	Liquid metal	$0.50 \pm$	80.0 ± 0.5	19.5 ± 0.4	99.71
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						0.11			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					FeAs ₂	33.2 ± 0.5	1.04 ± 0.37	65.7 ± 0.4	100.61
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	78	950/0.5	650	12	Liquid metal	$0.52 \pm$	89.9 ± 0.3	9.6 ± 0.3	99.67
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						0.0^{7}	0.26 + 0.25	C(1 + 0.4)	100.50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	70	050/0.5	(50	1.5	$FeAs_2$	33.6 ± 0.0	0.36 ± 0.35	66.1 ± 0.4	100.59
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	/9	830/0.5	650	15	Liquid metal	$0.2/\pm$	$/9.2 \pm 0.5$	20.5 ± 0.3	99.71
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Fals	0.14	0.40 ± 0.55	66.0 ± 0.6	100 50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	80	800/0.5	650	10.5	Liquid motal	0.25 ± 0.1	0.49 ± 0.33	00.0 ± 0.0	00.70
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	00	800/0.5	030	10.5		$0.25 \pm$	79.3 ± 0.1	20.4 ± 0.1	99.19
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Fedse	333 + 01	0.34 ± 0.42	664 ± 04	100 39
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(e) M	eX_{a} (Me = 1	Fe and X	= Sh and	$\frac{1}{4}$ As) liquidus	55.5 ± 0.1	0.54 ± 0.42	00.7 ± 0.7	100.57
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	81	1000/0.5	650	36.5	Liquid metal	2.2 ± 0.2	96.1 ± 0.3	1.7 ± 0.1	100.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1000,010	000	2012	MeX ₂	33.6 ± 0.1	60.5 ± 0.1	5.9 ± 0.1	100.36
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(f) Bo	undary bety	ween BCC	C-Fe and	$MeX = Fe_{1+x}$	(Sb. As) pri	mary phase f	ields	100.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	82	-	975	6.5	Liquid metal	68.9 ± 0.4	24.2 ± 0.6	7.0 ± 0.4	100.34
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					BCC-Fe	93.6 ± 0.1	3.0 ± 0.0	3.4 ± 0.0	100.40
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					MeX	59.7 ± 0.1	37.8 ± 0.1	2.4 ± 0.0	100.31
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	83	1000/0.5	900	4	Liquid metal	71.7 ± 0.2	11.4 ± 0.1	16.9 ± 0.2	100.08
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					BCC-Fe	91.5 ± 0.0	1.3 ± 0.0	7.1 ± 0.0	99.96
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					MeX	59.0 ± 0.0	32.8 ± 0.1	8.1 ± 0.1	99.69
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	84	950/0.5	900	10.75	Liquid metal	72.3 ± 0.5	10.2 ± 0.3	17.5 ± 0.6	100.33
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					BCC-Fe	91.4 ± 0.2	1.3 ± 0.1	7.3 ± 0.1	100.26
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					MeX	59.8 ± 0.2	31.6 ± 0.1	8.6 ± 0.1	100.19
$ \begin{array}{ c c c c c c c c } \hline BCC-Fe & 91.0 \pm 0.1 & 0.86 \pm 0.02 & 8.1 \pm 0.1 & 100.28 \\ \hline MeX & 60.0 \pm 0.1 & 27.5 \pm 0.1 & 12.5 \pm 0.0 & 100.40 \\ \hline (g) Boundary between MeX = Fe_{1+x}(Sb, As) and Fe(As, Sb) primary phase fields \\ \hline 86 & 1000/0.5 & 750 & 36 & Liquid metal & 6.2 \pm 0.6 & 90.6 \pm 0.9 & 3.2 \pm 0.3 & 100.32 \\ \hline MeX & 51.9 \pm 0.1 & 18.8 \pm 0.4 & 29.3 \pm 0.4 & 100.29 \\ \hline FeAs & 49.5 \pm 0.3 & 2.6 \pm 0.1 & 47.9 \pm 0.3 & 101.01 \\ \hline (h) Boundary between MeX = Fe_{1+x}(Sb, As) and Fe_2(As, Sb) \\ \hline 87 & 950/0.5 & 850 & 13.5 & Liquid metal & 69.3 \pm 0.5 & 6.0 \pm 0.1 & 24.7 \pm 0.5 & 100.16 \\ \hline MeX & 59.8 \pm 0.2 & 19.5 \pm 0.1 & 20.7 \pm 0.1 & 99.76 \\ \hline Fe_2As & 65.8 \pm 0.1 & 2.6 \pm 0.1 & 31.6 \pm 0.1 & 100.12 \\ \hline (i) Boundary between Fe(As, Sb) and Fe(As, Sb)_2 primary phase fields \\ \hline 88 & - & 950 & 6 & Liquid metal & 20.3 \pm 0.9 & 30.7 \pm 1.4 & 49.0 \pm 0.8 & 100.44 \\ \hline FeAs & 49.7 \pm 0.1 & 0 & 50.3 \pm 0.1 & 100.20 \\ \hline FeAs_2 & 33.6 \pm 0.1 & 0.15 \pm 0.06 & 66.3 \pm 0.2 & 100.91 \\ \hline 89 & - & 925 & 5.5 & Liquid metal & 10.6 \pm 0.4 & 50.2 \pm 1.0 & 39.2 \pm 1.0 & 100.43 \\ \hline FeAs_2 & 34.0 \pm 0.1 & 0.33 \pm 0.07 & 65.6 \pm 0.1 & 100.90 \\ \hline 90 & 1000/0.5 & 925 & 14.25 & Liquid metal & 11.0 \pm 0.5 & 48.5 \pm 1.2 & 40.5 \pm 0.9 & 100.45 \\ \hline FeAs & 49.8 \pm 0.2 & 0.36 \pm 0.02 & 49.8 \pm 0.2 & 100.13 \\ \hline \end{array}$	85	1000/0.5	850	10.25	Liquid metal	72.0 ± 0.1	7.8 ± 0.1	20.3 ± 0.1	100.18
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					BCC-Fe	91.0 ± 0.1	0.86 ± 0.02	8.1 ± 0.1	100.28
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					MeX	60.0 ± 0.1	27.5 ± 0.1	12.5 ± 0.0	100.40
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(g) Bo	oundary bet	ween Me	$X = Fe_{1+}$	x(Sb, As) and	Fe(As, Sb)	primary phas	e fields	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	86	1000/0.5	750	36	Liquid metal	6.2 ± 0.6	90.6 ± 0.9	3.2 ± 0.3	100.32
Image: heat of the formula is the formula in the formula is the					MeX	51.9 ± 0.1	18.8 ± 0.4	29.3 ± 0.4	100.29
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					FeAs	49.5 ± 0.3	2.6 ± 0.1	47.9 ± 0.3	101.01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(h) Bo	bundary bet	ween Me.	$X = Fe_{1+}$	x(Sb, As) and	$Fe_2(As, Sb)$			100.16
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	87	950/0.5	850	13.5	Liquid metal	69.3 ± 0.5	6.0 ± 0.1	24.7 ± 0.5	100.16
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					MeX	59.8 ± 0.2	19.5 ± 0.1	20.7 ± 0.1	99.76
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	() D	1 1	E-(/		$ Fe_2As$	$ 65.8 \pm 0.1 $	2.6 ± 0.1	31.6 ± 0.1	100.12
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(1) BO	undary betw	veen Fe(A	AS, SD) a	I intervention (As, Sb)	$_2$ primary p	$\frac{1}{20.7 \pm 1.4}$	40.0 + 0.0	100 44
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	88	-	930	0	Equid metal	20.3 ± 0.9	$30./\pm 1.4$	49.0 ± 0.8	100.44
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					FeAs	49.7 ± 0.1		30.3 ± 0.1	100.20
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	00		025	55	reAs ₂	33.0 ± 0.1	0.13 ± 0.00	00.3 ± 0.2	100.91
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	09	-	923	5.5	Equid metal	10.0 ± 0.4	50.2 ± 1.0	37.2 ± 1.0	100.43
90 1000/0.5 925 14.25 Liquid metal 11.0 \pm 0.5 48.5 \pm 1.2 40.5 \pm 0.9 100.45 FeAs 49.8 \pm 0.2 0.36 \pm 0.02 49.8 \pm 0.2 100 13					Fels	34.0 ± 0.1	0.33 ± 0.07	$+7.7 \pm 0.0$	100.30
FeAs 49.8 \pm 0.2 0.3 \pm 1.2 40.3 \pm 0.3 100.43 FeAs 49.8 \pm 0.2 0.36 \pm 0.02 49.8 \pm 0.2 100 13	90	1000/0.5	925	14 25	Liquid metal	110 ± 0.1	485 ± 0.07	40.5 ± 0.1	100.90
		1000/0.5	220	11.23	FeAs	49.8 ± 0.2	0.36 ± 0.02	49.8 ± 0.7	100.13

				FeAs ₂	33.4 ± 0.2	1.0 ± 0.2	65.5 ± 0.1	100.67
91	1000/0.5	900	14	Liquid metal	6.8 ± 0.3	60.8 ± 0.9	32.4 ± 0.9	100.35
				FeAs	49.6 ± 0.2	0.48 ± 0.09	50.0 ± 0.2	99.85
				FeAs ₂	32.3 ± 0.7	2.1 ± 0.8	65.6 ± 0.2	100.51
92	1000/0.5	700	12	Liquid metal	1.0 ± 0.2	90.8 ± 0.2	8.1 ± 0.1	100.23
				FeAs	49.3 ± 0.1	0.44 ± 0.17	50.3 ± 0.2	100.74
				FeAs ₂	32.8 ± 0.1	1.7 ± 0.2	65.6 ± 0.1	100.87
(i) Bo	undary bety	veen Fe(A	As, Sb) a	and MeX ₂ (Me	= Fe and X	= Sb and As) primary pl	hase fields
93	1000/0.5	700	20	Liquid metal	4.8 ± 0.5	93.3 ± 0.5	1.9 ± 0.1	100.28
				FeAs	50.4 ± 0.1	2.9 ± 0.2	46.8 ± 0.3	100.71
				MeX ₂	33.7 ± 0.1	61.6 ± 0.1	4.7 ± 0.1	99.78
94	1000/0.5	700	6	Liquid metal	4.7 ± 0.5	93.4 ± 0.5	1.9 ± 0.1	100.15
				FeAs	49.2 ± 1.2	2.5 ± 0.2	48.3 ± 1.3	100.30
				MeX ₂	33.7 ± 0.2	59.5 ± 0.7	6.7 ± 0.6	100.35
(k) Su	b-solidus		1				<u> </u>	
95	1000/0.5	950	21	MeX	53.5 ± 0.1	5.1 ± 0.1	41.4 ± 0.1	100.32
				FeAs	49.8 ± 0.2	0.84 ± 0.07	49.3 ± 0.2	100.78
96	1000/0.5	900	24	Fe ₂ As	65.5 ± 0.2	0.88 ± 0.02	33.6 ± 0.2	100.14
				MeX	59.4 ± 0.8	4.6 ± 0.5	36.0 ± 0.3	100.43
97	900/0.5	850	12	BCC-Fe	91.0 ± 0.0	0.76 ± 0.01	8.3 ± 0.0	99.80
				MeX	59.6 ± 0.1	28.0 ± 0.0	12.4 ± 0.1	100.26
98	1000/0.5	850	12	MeX	60.9 ± 0.8	6.1 ± 0.9	33.0 ± 0.0	100.22
				Fe ₂ As	65.1 ± 0.1	1.4 ± 0.0	33.5 ± 0.1	100.17
99	1000/0.5	850	15	MeX	60.2 ± 0.3	19.2 ± 0.2	20.5 ± 0.2	100.31
				Fe ₂ As	65.9 ± 0.1	1.4 ± 0.5	32.7 ± 0.4	100.06
100	900/0.5	800	5	BCC-Fe	91.3 ± 0.1	0.58 ± 0.02	8.1 ± 0.1	100.06
				MeX	59.3 ± 0.1	28.3 ± 0.1	12.4 ± 0.0	100.32
101	900/0.5	800	14	MeX	57.4 ± 0.3	10.2 ± 0.1	32.4 ± 0.3	100.33
				Fe ₂ As	65.7 ± 0.1	1.3 ± 0.1	32.9 ± 0.2	100.20
102	900/0.5	800	17	MeX	54.9 ± 0.4	11.2 ± 0.1	33.8 ± 0.4	99.95
				FeAs	49.9 ± 0.2	1.8 ± 0.2	48.3 ± 0.4	100.82
103	1000/0.5	800	5	BCC-Fe	90.5 ± 0.5	0.93 ± 0.39	8.6 ± 0.1	100.42
				MeX	60.1 ± 0.2	25.1 ± 0.6	14.8 ± 0.4	100.23
				Fe ₂ As	68.7 ± 0.5	3.0 ± 0.1	28.3 ± 0.4	100.32
104	950/0.5	800	15	BCC-Fe	90.6 ± 0.3	0.70 ± 0.12	8.6 ± 0.2	99.66
				MeX	59.5 ± 0.1	26.2 ± 0.0	14.3 ± 0.1	99.67
				Fe ₂ As	65.8 ± 0.1	2.8 ± 0.1	31.5 ± 0.1	100.08
105	950/0.5	750	15	BCC-Fe	91.5 ± 0.1	0.49 ± 0.02	8.0 ± 0.1	99.78
				MeX	58.7 ± 0.2	29.5 ± 0.2	11.9 ± 0.1	100.12
				Fe ₂ As	65.9 ± 0.1	3.2 ± 0.1	30.9 ± 0.1	100.09
106	950/0.5	700	12	BCC-Fe	92.0 ± 0.1	0.45 ± 0.04	7.5 ± 0.0	100.13
				MeX	58.0 ± 0.2	31.9 ± 0.5	10.1 ± 0.5	100.28
				Fe ₂ As	66.5 ± 0.8	2.8 ± 0.2	30.7 ± 0.7	100.27
107	950/0.5	600	11.5	FeAs	50.4 ± 0.2	0.06 ± 0.01	49.6 ± 0.2	100.33
				FeAs ₂	33.6 ± 0.2	0.88 ± 0.24	65.5 ± 0.3	100.19
				As-Sb	0.0 ± 0.1	90.2 ± 1.1	9.8 ± 1.1	99.67
				solution				
108	1000/0.5	600	10.5	FeAs	50.1 ± 0.1	0.60 ± 0.52	49.3 ± 0.6	100.48
				As-Sb	0.3 ± 0.2	$\overline{95.9\pm0.8}$	3.8 ± 0.7	99.83
				solution				
109	900/0.5	600	38	FeAs	49.2 ± 0.4	1.7 ± 0.7	49.1 ± 0.4	100.70
				MeX ₂	33.6 ± 0.2	60.2 ± 0.7	6.3 ± 0.7	100.39
				As-Sb	1.1 ± 0.6	97.8 ± 0.9	1.1 ± 0.3	99.86

				solution				
110	800/0.5	600	12	FeAs ₂	33.5 ± 0.3	0.21 ± 0.26	66.3 ± 0.5	100.52
				As-Sb	0.0 ± 0.1	78.1 ± 0.3	21.9 ± 0.3	99.77
				solution				
111	1000/0.5	550	37	FeAs	50.6 ± 0.2	1.1 ± 0.2	48.3 ± 0.3	100.46
				As-Sb	0.4 ± 0.2	97.4 ± 0.5	2.2 ± 0.3	99.90
				solution				
112	900/0.5	550	37	MeX ₂	33.8 ± 0.2	60.0 ± 0.7	6.2 ± 0.6	100.33
				As-Sb	0.9 ± 0.4	98.0 ± 0.7	1.1 ± 0.3	99.71
				solution				

Table S2 Measured composition of the phases (average values and standard deviation) in the Fe-As syster	n,
expressed in mol.% with SiO2 substrate of each phase equilibrated at fixed temperature and fixed first preheatin	ıg
at 600 °C for 1 h to all arsenic containing samples with or without second preheating.	

S	Preheat	Equili	bratio	Phasa	Normalize	ed mol. %	Unnormalized
no.	(°C/h)	T	t (h)	1 Hast	Fe	As	(₩1.70)
	C Faliquid	(°C)					
(I) BC		1500	3	Liquid metal	97.2 ± 0.2	28 ± 0.2	100.02
115	-	1500	5	BCC-Fe	$99.10 \pm$	2.0 ± 0.2	99.75
				Bee-re	0.02	0.01 ± 0.02	99.15
114	-	1450	5.25	Liquid metal	93.9 ± 0.1	6.1 ± 0.1	100.48
				BCC-Fe	98.1 ± 0.0	1.9 ± 0.0	99.71
115	-	1400	4.75	Liquid metal	91.1 ± 0.1	8.9 ± 0.1	100.24
				BCC-Fe	97.2 ± 0.1	2.8 ± 0.1	99.76
116	-	1350	13.5	Liquid metal	88.8 ± 0.2	11.2 ± 0.2	100.33
				BCC-Fe	96.4 ± 0.0	3.6 ± 0.0	99.87
117	-	1300	11.5	Liquid metal	86.5 ± 0.4	13.5 ± 0.4	100.34
				BCC-Fe	95.5 ± 0.0	4.5 ± 0.0	99.93
118	-	1250	25.5	Liquid metal	84.1 ± 0.6	15.9 ± 0.6	100.50
				BCC-Fe	94.8 ± 0.2	5.2 ± 0.2	99.79
119	-	1200	26.5	Liquid metal	81.7 ± 0.4	18.3 ± 0.4	100.31
				BCC-Fe	93.9 ± 0.2	6.1 ± 0.2	99.92
120	-	1150	18.7	Liquid metal	80.8 ± 0.6	19.2 ± 0.6	100.13
			5	BCC-Fe	93.3 ± 0.1	6.7 ± 0.1	99.84
121	-	1100	5.75	Liquid metal	79.1 ± 0.3	20.9 ± 0.3	100.01
				BCC-Fe	92.8 ± 0.1	7.2 ± 0.1	100.05
122	-	1050	5.75	Liquid metal	77.7 ± 0.4	22.3 ± 0.4	100.32
				BCC-Fe	92.3 ± 0.1	7.7 ± 0.1	100.12
123	-	1000	25.5	Liquid metal	76.7 ± 0.5	23.3 ± 0.5	100.11
				BCC-Fe	91.6 ± 0.1	8.4 ± 0.1	100.03
124	1000/0.5	950	17	Liquid metal	75.8 ± 0.3	24.2 ± 0.3	100.26
				BCC-Fe	91.1 ± 0.1	8.9 ± 0.1	99.90
125	1000/0.5	900	15.7	Liquid metal	75.1 ± 0.2	24.9 ± 0.2	100.24
			5	BCC-Fe	90.7 ± 0.1	9.3 ± 0.1	100.07
126	1000/0.5	850	47.2	Liquid metal	74.3 ± 0.2	25.7 ± 0.2	100.34
			5	BCC-Fe	90.3 ± 0.1	9.7 ± 0.1	100.13
(m) Fe	e ₂ As liquidu	S		[]		1	
127	1000/0.5	900	24.5	Liquid metal	69.5 ± 0.3	30.5 ± 0.2	100.20
				Fe ₂ As	66.2 ± 0.2	33.8 ± 0.2	100.41
128	1000/0.5	850	40	Liquid metal	74.0 ± 0.2	26.0 ± 0.0	99.90
				Fe ₂ As	66.4 ± 0.0	33.6 ± 0.0	100.13
129	1000/0.5	850	7.25	Liquid metal	74.0 ± 0.2	26.0 ± 0.0	99.90
()~~				Fe ₂ As	66.3 ± 0.2	33.7 ± 0.0	99.98
(n) Su	b-solidus	1000			40.0.0.4		100.10
130	-	1000	72.7	FeAs	49.8 ± 0.1	50.2 ± 0.1	100.19
101	1050/0.2	0.000	5	MeX "Fe ₃ As ₂ "	55.3 ± 0.1	$44./\pm0.1$	100.45
131	1050/0.2	980	/1.7	FeAs	49.9 ± 0.1	50.1 ± 0.0	100.66
100	5	0.00	5	MeX "Fe ₃ As ₂ "	55.8 ± 0.2	44.2 ± 0.1	100.49
132	1050/0.2	960	84.7	FeAs	50.0 ± 0.1	50.0 ± 0.1	100.48
	5		5	MeX "Fe ₃ As ₂ "	56.7 ± 0.1	43.3 ± 0.1	100.12
133	1050/0.2	940	70.7	FeAs	50.1 ± 0.0	49.9 ± 0.2	100.66

	5		5	MeX "Fe ₃ As ₂ "	57.1 ± 0.1	42.9 ± 0.1	100.07
134	1050/0.2	920	72	FeAs	49.8 ± 0.1	50.2 ± 0.2	100.84
	5			MeX "Fe ₃ As ₂ "	57.1 ± 0.1	42.9 ± 0.1	100.10
135	1000/0.5	900	75	Fe ₂ As	66.4 ± 0.2	33.6 ± 0.2	100.26
				MeX "Fe ₃ As ₂ "	59.7 ± 0.1	40.3 ± 0.1	100.54
136	1050/0.2	900	71.5	FeAs	49.8 ± 0.2	50.2 ± 0.1	100.86
	5			MeX "Fe ₃ As ₂ "	57.5 ± 0.1	42.5 ± 0.1	100.19
137	1000/0.5	880	71.5	Fe ₂ As	66.6 ± 0.2	33.4 ± 0.1	100.14
				MeX "Fe ₃ As ₂ "	59.3 ± 0.1	40.7 ± 0.1	100.12
138	1050/0.2	880	71	FeAs	50.3 ± 0.1	49.7 ± 0.1	100.07
	5			MeX "Fe ₃ As ₂ "	58.1 ± 0.1	41.9 ± 0.1	100.04
139	1000/0.5	860	85.5	Fe ₂ As	66.4 ± 0.1	33.6 ± 0.1	100.28
				MeX "Fe ₃ As ₂ "	59.2 ± 0.1	40.8 ± 0.1	100.37
140	1050/0.2	860	84	FeAs	49.9 ± 0.1	50.1 ± 0.1	100.20
	5			MeX "Fe ₃ As ₂ "	58.4 ± 0.1	41.6 ± 0.1	100.50
141	1000/0.5	840	94.5	Fe ₂ As	66.3 ± 0.1	33.7 ± 0.1	100.38
				FeAs	49.9 ± 0.1	50.1 ± 0.0	100.75
142	1050/0.2	840	70.5	Fe ₂ As	66.4 ± 0.1	33.6 ± 0.1	100.03
	5			FeAs	49.9 ± 0.1	50.1 ± 0.0	101.00
143	1000/0.5	820	72.7	Fe ₂ As	66.3 ± 0.1	33.7 ± 0.0	100.12
			5	FeAs	50.2 ± 0.0	49.8 ± 0.0	100.12
144	1050/0.2	820	74.5	Fe ₂ As	66.6 ± 0.1	33.4 ± 0.0	100.16
	5			FeAs	50.0 ± 0.0	50.0 ± 0.0	100.15
145	1000/0.5	700	86	BCC-Fe	$9\overline{1.8\pm0.1}$	8.2 ± 0.0	100.19
				Fe ₂ As	66.2 ± 0.1	33.8 ± 0.0	100.30
146	1000/0.5	600	85	BCC-Fe	$9\overline{2.3 \pm 0.4}$	7.7 ± 0.0	99.62
				Fe ₂ As	66.1 ± 0.2	33.9 ± 0.0	100.27

Table S3 Measured composition of the p	bhases (average values	and standard deviatio	n) in the Fe-Sb system,
expressed in mol.% with SiO ₂ substrate of	each phase equilibrated	at fixed temperature wi	th or without preheating.

	Preheat	eheat Equilibratio		Phase	Normal	ized mol.	Unnormalized	
S.	2	n	1			%	(wt.%)	
no.	(°C/h)	T	t (h)		Fe	Sb		
		(°C)						
(0) BC	C-Fe liquid	us	_	T · · 1		10.0	100.47	
147	-	1400	5	Liquid	89.8 ±	$10.2 \pm$	100.47	
				metal	0.4	0.4	00 50	
				BCC-Fe	98.3 ±	1.7 ± 0.0	99.72	
					0.0			
148	-	1350	5.25	Liquid	86.0 ±	$14.0 \pm$	100.40	
				metal	0.6	0.6		
				BCC-Fe	97.8 ±	2.2 ± 0.0	99.98	
					0.0			
149	-	1300	3.5	Liquid	82.1 ±	17.9 ±	100.50	
				metal	1.2	1.2		
				BCC-Fe	97.3 ±	2.7 ± 0.0	99.98	
					0.0			
150	-	1250	6.25	Liquid	$78.7 \pm$	21.3 ±	100.31	
				metal	0.8	0.8		
				BCC-Fe	96.9±	3.1 ± 0.1	100.11	
					0.1			
151	-	1200	5.5	Liquid	74.8 ±	25.2 ±	100.26	
				metal	0.8	0.8		
				BCC-Fe	96.4 ±	3.6 ± 0.0	100.17	
					0.0			
152	_	1150	6.75	Liquid	72.1 ±	27.9 ±	100.36	
_				metal	1.0	1.0		
				BCC-Fe	96.1±	3.9 ± 0.0	99.77	
					0.0			
153	_	1100	3	Liquid	70.3 ±	29.7 ±	100.28	
				metal	0.8	0.8		
				BCC-Fe	95.6 ±	4.4 ± 0.0	100.21	
				20010	0.0		1000-1	
154	_	1050	6	Liquid	68.3 +	31.7+	100.32	
10.		1000	Ũ	metal	0.5	0.5	100002	
				BCC-Fe	95.1+	49+00	99 70	
				Decire	0.0	1.9 ± 0.0	<i>уу</i> .то	
(p) Me	• eX-Fe1Sh	iquidus	1			1		
155	-	1020	28.7	Liquid	64.0 ±	36.0±	100.33	
			5	metal	0.4	0.4	100.00	
				MeX	59.2 +	40.8+	100.16	
				1.10/1	0.2	0.2	100110	
156	-	1000	4.75	Liquid	43.8+	56.2 +	100.18	
	1	1000		2.14.4			100.10	

				metal	0.7	0.7	
				MeX	55.1 ±	44.9 ±	100.30
					0.1	0.1	
157	_	975	7.5	Liquid	38.9+	61.1+	100 44
107		10	/.5	metal	1.3	1.3	100.11
				MeX	54.8 +	$45.2 \pm$	100.21
				IVIC/X	0.2	13.2 ± 0.2	100.21
158	_	950	26	Liquid	34.1 +	65.9 +	99.88
150	-	950	20	metal	1 2	12	99.00
				MaX	542	1.2	00.02
				IVIEA	$54.5 \pm$	$43.7 \pm$	99.95
150	1000/0.5	025	145	т :: 1		0.1	00.04
159	1000/0.5	925	14.5	Liquid	30.9 ±	69.1±	99.94
				metal	1.0	1.0	100.00
				MeX	53.7±	$46.3 \pm$	100.29
					0.1	0.1	
160	1000/0.5	900	20	Liquid	$27.2 \pm$	$72.8 \pm$	100.42
				metal	1.4	1.4	
				MeX	53.6 ±	$46.4 \pm$	100.11
					0.1	0.1	
161	1000/0.5	850	14.5	Liquid	21.6 ±	$78.4 \pm$	99.83
				metal	1.6	1.6	
				MeX	52.9 ±	47.1 ±	100.06
					0.2	0.2	
162	1000/0.5	800	15	Liquid	16.2 ±	83.8 ±	99.83
				metal	0.8	0.8	
				MeX	52.7 ±	47.3 ±	99.72
					0.2	0.2	
163	1000/0.5	750	19.7	Liquid	11.7+	88.3 +	99.67
100	1000,000	, 0 0	5	metal	1.3	1.3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			Ū	MeX	52.0+	48.0 +	100.26
				1,1011	0.2	0.2	100.20
(a) Me	X_{a} (Me = F	e and X	= Sb) li	auidus	0.2	0.2	
164	1000/0.5		24.7	Liquid	53 ± 0.7	047+	00 77
104	1000/0.5	700	24.7	metal	5.5 ± 0.7	0.0	<i>уу</i> .//
			5	M-X	227		100.42
				Mex ₂	$33.7 \pm$	$00.3 \pm$	100.42
1.65	1000/0.5	(50	25	T · · 1	0.2	0.0	00.00
165	1000/0.5	650	25	Liquid	2.5 ± 0.2	97.5 ±	99.90
				metal	22.0.1	0.0	100.07
				MeX_2	33.8±	$66.2 \pm$	100.36
					0.1	0.0	
(r) Sub	o-solidus			L	1		
166	1050/0.2	900	52	BCC-Fe	95.4 ±	4.6 ± 0.0	99.97
	5				0.0		
				MeX	58.4 ±	41.6 ±	99.52
					0.1	0.0	
167	1050/0.2	800	51	BCC-Fe	96.1 ±	3.9 ± 0.0	99.96
	5				0.0		
				MeX	56.9 ±	43.1 ±	99.85
					0.2	0.0	

References

- 1. M. Peterson and L. G. Twidwell, J. Hazard. Mater., 1985, 12, 225-229.
- 2. D. Filippou, P. St-Germain and T. Grammatikopoulos, *Miner. Process. Extr. Metall. Rev.*, 2007, **28**, 247-298.
- 3. A. M. Nazari, R. Radzinski and A. Ghahreman, *Hydrometallurgy*, 2017, 174, 258-281.
- 4. F. Nshimiyimana, S. Essarraj, M. Hibti, P. Boulvais, A. J. Boyce, C. Marignac and L. Maacha, *Journal of African Earth Sciences*, 2018, **145**, 1-17.
- J. Majzlan, S. Kiefer, J. Herrmann, M. Stevko, J. Sejkora, M. Chovan, T. Lanczos, M. Lazarov, A. Gerdes, F. Langenhorst, A. Borcinova Radkova, H. Jamieson and R. Milovsky, *Chem. Geol.*, 2018, 488, 1-20.
- 6. L. Jurkovic, J. Majzlan, E. Hiller, T. Klimko, B. Volekova-Lalinska, S. Meres, J. Gottlicher and R. Steininger, *Environmental Earth Sciences*, 2019, **78**, 672.
- 7. S. Zhang, R. Zhang, P. Wu, Y. Zhang, Y. Fu, L. An and Y. Zhang, *Environmental Science and Pollution Research*, 2022, **29**, 55161-55173.
- 8. H. Zhang, W. Zhang, P. Cao, Y. Li, B. Yang, X. Chen and B. Xu, J. Cleaner Prod., 2024, 452, 142212.
- 9. K. Friedrich, *Metallurgie*, 1907, **4**, 129.
- 10. P. Oberhoffer and A. Gallaschik, *Stahl Eisen*, 1923, 43, 398-400.
- 11. W. D. Jones, J. Iron Steel Inst., London, 1934, 7, 429-437.
- 12. V. N. Svechnikov and N. V. Gridnev, *Metallurg (Leningrad)*, 1938, 13, 13-19.
- 13. H. Sawamura and T. Mori, Mem. Fac. Eng., Kyoto Univ., 1952, 14, 129-144.
- 14. T. Sawamura, T. Sakari, T. Inoue and M. Uematsu, *Tetsu to Hagane*, 1953, **39**, 776-777.
- 15. V. N. Svechnikov and A. K. Shurin, Dopov. Akad. Nauk Ukr. RSR, 1957, 27-29.
- 16. V. N. Svechnikov, V. M. Pan and A. K. Shurin, Fiz. Met. Metalloved., 1958, 6, 662-664.
- 17. L. A. Clark, Econ. Geol. Bull. Soc. Econ. Geol., 1960, 55, 1631-1652.
- 18. L. A. Clark, Econ. Geol. Bull. Soc. Econ. Geol., 1960, 65, 1345-1381.
- 19. B. Predel and M. Frebel, Arch. Eisenhuettenw., 1971, 42, 365-373.
- 20. B. Bozic, Glas Srpska Akademija Nauka i Umetnosti, Odeljenje Tehnickih Nauka, 1979, 14, 1-18.
- 21. B. Pei, B. Bjoerkman, B. Jansson and B. Sundman, Z. Metallkd., 1994, 85, 171-177.
- 22. O. Kidari and P. Chartrand, CALPHAD, 2023, 82, 102589.
- 23. Y. A. Ugai, Y. V. Bazhenov, E. G. Goncharov and A. E. Popov, Zh. Neorg. Khim., 1988, 33, 2905-2908.