Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

New phenothiazine-bridged dyes comprising both

type-I and type-II photoinjections for DSSCs

Ruijia Yao ^{a,#}, Tianwen Tan ^{a,#}, Song Xu ^b, Jing Bai ^a, Zhiqiang Gao ^{b,*}, Baoxiu Mi ^{a,*}, Wei Huang ^{a,c,*}

a. State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
b. Jiangsu Engineering Center for Plate Displays & Solid State Lighting, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Material Science and Engineering, Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, China.

c. Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China.

†These authors contributed equally to this work.

*These authors are corresponding authors.

E-mail addresses: iamzqgao@njupt.edu.cn, iambxmi@njupt.edu.cn, iamdirector@fudan.edu.cn, vc@nwpu.edu.cn

1. Synthesis procedures for the six new dyes.

General synthetic procedure for 2. A mixture of compound 1 (1.0 mmol), CB-B(OH)₂ (2.0 mmol), Pd(PPh₃)₄ (0.05 mmol), and K₂CO₃ (2M, 1mL) in THF solution was heated to reflux under a N₂ atmosphere for about 18 h. Then, the solvent was removed under vacuum and the residue was purified by column chromatography on silica gel using a 1:4 (v/v) mixture of Petroleum ether and CH₂Cl₂ as eluent to afford compound 2 as yellow solids, respectively.

General synthetic procedure for 3. A mixture of compound 2 (0.23 mmol), cyanoacetic acid (1.10 mmol) in acetic acid (20 mL) was refluxed in the presence of ammonium acetate (0.28 mmol) under a N₂ atmosphere for about 24 h. Then, water was added and extracted with CH₂Cl. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel with 1:10 (v/v) methanol/chloroform to yield as a dark red solid.

2. Tables and figures.

Dye	$\lambda_{\max}^{a}(\epsilon)$		λ _{max} b		$\lambda_{ ext{cutoff}}$ a	Е _{номо} /Е _{цимо} eV		E _g c eV	E _g d eV
	10 TO .	wi -cm -)	п	[[]	nm	E _{exp} c	E_{cal}^d		
on2	295 (3.19)	453 (1.03)	355	425	572	-5.70/-2.99	-5.65/-2.81	2.71	2.84
mn2	294 (4.56)	450 (1.11)	357	429	578	-5.72/-2.99	-5.67/-2.82	2.73	2.85
pn2	294 (2.33)	469 (0.72)	360	429	569	-5.69/-2.98	-5.59/-2.82	2.71	2.77
ob8	295 (4.23)	443 (1.49)	361	429	557	-5.74/-3.05	-5.72/-2.92	2.69	2.80
mb8	294 (4.82)	445 (1.53)	359	430	557	-5.76/-2.99	-5.74/-2.93	2.77	2.81
pb8	295 (3.43)	439 (1.11)	355	427	547	-5.78/-3.00	-5.65/-2.93	2.78	2.72

 Table S1. Summary of photophysical data and energy levels.

a Data is measured in DCM solvent. b Data are measured on TiO_2 films. c Data are measured from CV diagram. d Data are calculated by B3LYP/6-311G(d,p).

dua	transitio	λ_{abs}		. f	main composition	
uye	n	nm	eV			
on2	s ₀ -s ₁	395.40	3.14	0.77	H→L (83.1%); H-1→L (7.1%)	
	\$ ₀ -\$ ₂	303.24	4.09	0.34	H-3→L (55.3%); H-4→L (17.4%)	
	\$ ₀ -\$ ₃	285.21	4.35	0.24	H→L+1 (41.0%); H-4→L (15.3%)	
mn2	s ₀ -s ₁	393.88	3.15	0.76	H→L (83.1%); H-1→L (6.3%)	
	s ₀ -s ₂	302.64	4.10	0.35	H-3→L (51.2%); H-4→L (21.8%)	
	s ₀ -s ₃	284.13	4.36	0.24	H→L+1 (37.5%); H→L+4 (17.6%)	
pn2	s ₀ -s ₁	395.46	3.14	0.80	H→L (57.1%); H-1→L (32.8%)	
	s ₀ -s ₂	303.52	4.08	0.41	H-3→L (52.3%); H-4→L (16.2%)	
	\$ ₀ -\$ ₃	288.04	4.30	0.25	H→L+1 (45.6%); H-4→L (18.9%)	
ob8	s ₀ -s ₁	387.66	3.20	0.46	H→L (49.3%); H-1→L (40.5%)	
	\$ ₀ -\$ ₂	308.15	4.02	0.42	H-3→L (51.3%); H-4→L 24.2%)	
	\$ ₀ -\$ ₃	282.86	4.38	0.31	H-4→L (21.1%); H→L+1 (14.4%)	
mb8	s ₀ -s ₁	383.18	3.24	0.43	H-1→L (80.9%); H→L (7.8%)	
	\$ ₀ -\$ ₂	307.61	4.03	0.43	H-3→L (45.1%); H-4→L (31.6%)	
	\$ ₀ -\$ ₃	282.24	4.39	0.12	H→L+2 (77.5%)	
pb8	s ₀ -s ₁	384.77	3.22	0.45	H-1→L (61.9%); H→L (27.8%)	
	\$ ₀ -\$ ₂	308.10	4.02	0.47	H-3→L (47.9%); H-4→L (25.8%)	
	s ₀ -s ₃	286.22	4.33	0.33	H→L (33.9%); H-4→L (29.9%)	

Table S2. The six dyes of electron transitions in CAM-B3LYP/6-31G(d) level.

Duo		n b(nc)					
Dye -	A1(%)	τ ₁ (ns)	A2(%)	τ ₂ (ns)	τ _{av} ^a (ns)	- <i>n</i> _{inj} ~(ns)	
on2	81.40/92.80	2.02/0.10	18.60/7.20	7.23/7.91	2.99/0.66	77.93	
mn2	63.05/91.05	2.03/0.11	36.95/8.95	7.46/5.54	4.04/0.60	85.15	
pn2	64.28/84.78	1.73/0.12	35.72/15.22	5.44/3.37	3.06/0.61	80.07	
ob8	93.29/89.19	2.36/0.21	6.71/10.81	9.48/2.57	2.84/0.47	83.45	
mb8	89.20/90.68	2.43/0.27	10.80/9.32	7.99/2.66	3.03/0.49	83.83	
pb8	91.17/91.77	2.52/0.22	8.83/8.23	8.81/3.47	3.08/0.49	84.09	
^a The values of τ_{av} are determined with $\tau_{av} = A_1 \tau_1 + A_2 \tau_2$. ^b Calculated by $\eta_{inj} = 1 - \eta_{i0j} - - \eta$							

Table S3. The fitting τ and corresponding A of the six new dyes from TRPL.

 Table S4. Dihedral angle of six dyes and TiO2@dyes in B3LYP/6-31G(d) level.

	dihedral angle	on2	mn2	pn2	ob8	mb8	pb8
	Cz-PTZ	79.18	82.90	81.84	77.73	83.92	82.94
	PTZ-CA	17.48	17.59	17.60	16.34	16.76	16.71
dye	Cz-CA	84.56	66.26	75.56	86.03	68.37	77.59
	μ	7.87	8.48	7.59	6.65	6.82	6.14
	μх	7.86	5.03	4.75	6.64	3.62	3.09
	Cz-PTZ	78.01	83.40	81.18	72.53	88.14	83.97
	PTZ-CA	25.69	25.33	26.27	23.57	23.06	24.36
dye _{TiO2}	Cz-CA	75.99	66.08	84.72	84.47	78.30	89.75
	μ	12.44	12.40	12.70	14.58	14.45	14.08
	μх	12.38	8.92	9.84	14.14	8.56	10.12

Dye	E _{total} (a.u.)	E _{TiO2} (a.u.)	E _{dye} (a.u.)	ΔE _{ads} (eV)
on2	-5439.663	-3340.260	-2099.118	-7.746
mn2	-5439.666	-3340.260	-2099.121	-7.755
pn2	-5439.666	-3340.260	-2099.122	-7.727
ob8	-5675.531	-3340.258	-2334.993	-7.619
mb8	-5675.534	-3340.259	-2334.993	-7.673
pb8	-5675.535	-3340.259	-2334.993	-7.700

Table S5. The adsorption energies *E*ads of the optimized dye/ $(TiO_2)_{16}$ systems.

 Table S6. The EIS fitting parameters for DSSCs sensitized by the dyes.

Dye	<i>R</i> _s (Ω)	R _{pt} (Ω)	R _{rec} (Ω)
on2	12.69	2.93	26.76
mn2	17.02	3.76	30.09
pn2	10.67	3.10	23.58
ob8	10.13	2.81	28.33
mb8	12.08	3.98	31.82
pb8	10.61	7.96	24.92

Figure S1. (a) $^1\!\mathrm{H}$ NMR and (b) $^{13}\!\mathrm{C}$ NMR of on2 dye.

Figure S2. (a) ${}^{1}H$ NMR and (b) ${}^{13}C$ NMR of mn2 dye.

Figure S3. (a) ${}^{1}H$ NMR and (b) ${}^{13}C$ NMR of **pn2** dye.

Figure S4. (a) 1 H NMR and (b) 13 C NMR of **ob8** dye.

Figure S5. (a) 1 H NMR and (b) 13 C NMR of **mb8** dye.

Figure S6. (a) 1 H NMR and (b) 13 C NMR of **pb8** dye.

Figure S7. Calculated UV-Vis absorbance spectra of six dyes in THF.

Figure S8. Calculated projected density of states (PDOS) for (a) on2, (b) mn2, (c) pn2, (d) ob8, (e) mb8, (f) pb8.

Figure S9. The J-V curves of ob8 device for reproducibility test.

Figure S10. LHE spectra of the dye-grafted TiO₂ films of six dyes. The equation: $LHE_{(\lambda)} = 1 - 10^{-10} \frac{1}{10} \frac{1}{10}$

Figure S11. *J-V* curves for repeated testing of the same device within 24 h, the Roman numerals are the times for testing.

Figure S12. The J-V curves of ob8 and ob8-CDCA co-adsorbent device.