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Experimental
Reagents

All the chemicals and reagents were purchased by commercial sources and utilized without
further purification. The solvents and metal salts were purchased from Merck Chemicals, India.
Furan-2-carbohydrazide, ethyl 3-oxobutanoate, piperidine and 2, 4-dihydroxybenzaldehyde were
purchased from Sigma-Aldrich Chemicals, USA. All the investigations were carried out using
Millipore water. One of the reactants 3-acetyl-7-hydroxy-2H-chromen-2-one was synthesized by
a reported procedure.!

Physico-chemical measurements

KBr pellets were used to record FT-IR spectra in 4000-400 cm! region on a FT-IR 4700
JASCO spectrophotometer. The JEOL Resonance Inc. multinuclear FT NMR spectrometer
(Model-ECZ 500R) was used to obtain 'H and '3C NMR spectra in DMSO-dg. The chemical shifts
are given in parts per million (ppm) with respect to an internal standard of tetramethylsilane
(TMS). ESI-mass spectra were recorded on an HRMS SCIEX X-500R QTOF spectrometer. The

Shimadzu UV-1800 spectrophotometer was used to record all the UV-Visible spectra.
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Fluorescence spectra were obtained using a HORIBA FL3C-21 1959C-2118-FL fluorescence
spectrophotometer. The LMPH-10 pH meter was used to monitor and adjust the pH of various
solutions. The EVO-(Scanning Electron Microscope) MA15 / 18 was used to capture the SEM
images. DLS measurements were conducted on a Zetasizer Ultra (ZSU5700) Malvern Panalytical
(UK) Particle Size Analyzer using 633 nm laser. A Bruker D8 Advance powder X-ray
diffractometer equipped with Cu Ka radiation with a Lyne Eye detector was used for the powder
X-ray diffraction experiments. XtalLAB S5 Synergy-I was used to acquire single-crystal X-ray
diffraction data. Solid state fluorescence was recorded on Fluorolog FL-3C-21 UV-Vis-NIR-
Spectrofluorometer with an integrated sphere (Steady-state). Thermal property was analyzed by
differential scanning calorimetry (DSC) on a Mettler Toledo Model-822¢ instrument in a nitrogen
environment at the heating rate of 10 °C/min.
General procedures

The stock solutions of HCFH (1x102 M) and metal salts were prepared in DMSO and
Millipore water, respectively. For various sensing experiments, a 20 uM solution of HCFH was
prepared in H;O (pH 7.4, HEPES buffer solution) by further diluting the stock solution.
Absorption and emission titration experiments were conducted using the HCFH solution at a
concentration of 1x10-2 M with increasing concentration of metal ion solutions (1x10-3 M). All
the titration studies were carried out at room temperature. Nitrate salts were used for different
cations, while acetate and chloride salts of Zn?* and Cu?" were employed to evaluate the effect of
counter anions. For fluorescence studies, an excitation wavelength of 400 nm and a slit width of

2 nm were optimized.
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Computational details

Theoretical investigation for HCFH, HCFH-Zn?>*, and HCFH-Cu?>" complexes
were carried out using Gaussian 09 software with the 6-311G (d, p) basis set and the RB3LYP
method. The minima of the potential energy of the DFT optimized structures were confirmed to
validate the results.?
X-ray crystallography

The Rigaku XtaLAB Synergy-I diffractometer with CrysAlisPro was used to conduct the
single crystal X-ray diffraction studies with a graphite monochromated Mo Ko (A = 0.71073 A)
and Cu Ka (L = 1.54184 A) radiation sources were used to get the single crystal X-ray diffraction
data at 293 K and 100 K. The structure was solved using the SHELXL-97 program and was refined
by full-matrix least-squares on F? with anisotropic displacement parameters applied to all non-
hydrogen atoms.?> Hydrogen atoms were refined with use of a riding model, placing them in
geometrically idealized positions. Structural representations were obtained using MERCURY
software and the ORTEP-3 tool for Windows.*
Cell culture

HelLa, cervical carcinoma cells were cultured in either T-flasks or 6- or 96-well plates,
depending on the experimental design. The cells were maintained in Dulbecco’s Modified Eagle
Medium (DMEM) containing L-glutamine supplemented with 10% fetal bovine serum (FBS), 100
U/mL penicillin, and 100 pg/mL streptomycin to ensure optimal growth conditions. Cultures were
incubated at 37°C in a CO: incubator, providing a controlled environment of 95% humidified air

and 5% CO..
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Cytotoxicity assay
A total of 5,000 cells were seeded into a 96-well plate and incubated in a CO: incubator for 24 h
to allow cell attachment and growth. To assess the cytotoxicity of the HCFH probe, cells were
exposed to varying concentrations of HCFH (10 to 150 uM) and incubated for 12 h in CO:
incubator. Cell viability was evaluated using the MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide), as previously described.
Bio-imaging and probe localization study

To assess the fluorescence properties of the HCFH probe, 5,000 HeLa cells were seeded
onto coverslips placed into a six-well plate and incubated for 24 h. The cells were then treated
with the HCFH probe (20 uM) alone, or in combination with Zn?>" and Cu?' for 1 h. After
treatment, cells were fixed with 4% paraformaldehyde for 15 min, permeabilized with 0.1% Triton
X-100 for 15 min, and counterstained with 10 uM DAPI for 5 min. The samples were then
mounted on slides using the DABCO anti-fading agent. For the localization study of the HCFH
probe, cells were grown and treated as described above. After 24 h incubation, cells were exposed
to the HCFH probe (20 uM) and also incubate with 100 nM MitoTracker CMXRos
simultaneously for 1 h at 37°C in a CO: incubator. After treatment, cells were washed, fixed,
permeabilized and counterstained with DAPI. The slides were mounted for visualization using a
confocal fluorescence microscope (ZEISS Imager.Z2m).
Fluorescence quantum yield measurements

Quantum yield was calculated by using the following equation:

ool )z

(1)
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Where Q is the fluorescence quantum yield, I is the integrated fluorescence intensity, n is the
refractive index of liquid, and OD is the optical density (absorption). The subscript r is used to

represent the known quantum yield of reference quinine sulphate, which is 0.54 in 0.1 M H,SO,.5

Fluorescence decay measurements
Time-resolved fluorescence spectra were recorded to explore AIE and sensing properties at the
concentrations of 20 uM, respectively.

Dynamic parameters are determined from the following equation:

X x
y=A1*exp(—T—)+A2*exp(—r—)+y0
1 2 .. (2)

Weighted mean lifetime <t> was calculated by using the following equation:

<t>= (A7, +A,1,) /(4 + A) )]

Where, Ai/A; and t,/1; are the fractions or amplitudes (A) and lifetimes (1), respectively.
The radiative rate constant (K;) and non-radiative rate constant (K,,) are calculated from the

following equations:®

-1 _
<t "> =(K,.+K,) .. (4

K, = ¢
<T> .. (5)

Method of calculation for detection limit (LOD)

Using fluorescence titration data, the limit of detection for HCFH was calculated by the
IUPAC definition, which was based on a plot of emission intensity vs increasing Zn**/Cu®*
concentration. To calculate the S/N ratio, we repeated our observations eight times, each time
measuring the emission intensity of HCFH without Zn?*/Cu?" and calculating the standard
deviation of blank data. The slope was calculated by plotting fluorescence intensity data at 496
nm against Zn>"/Cu?" concentration. The following equation is used to establish the detection
limit:
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3SD
Limit of Detection (LOD) = Slope(m) ... (6)

In this equation, m represents the slope of intensity vs sample concentration, and SD is the standard
deviation of blank measurements.’
Method of calculation for association constant

The binding ratio of HCFH to metal ions was calculated using Job's plot and the binding
constants (K,) of HCFH for Zn?" and Cu?" were obtained using the Benesi-Hildebrand equation.?

[y a ( 1
= +1
I-1, b-a\K,[Metal]

(7)
In this equation, I and I, are the intensities of HCFH fluorescence at 496 nm in the presence and

absence of Zn?"/Cu?*, respectively; a and b are constants; and [Metal] is the concentration of

Zn%"/Cu?".
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Fig. S23 Mass spectrum of HCFH-Cu?" complex
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Fig. S26 Effect of pH variation on the fluorescence intensities of HCFH (20 uM) in H,O (pH 7.4)
HEPES buffer solution, and after addition of Zn** and Cu?* (20 uM), (Aem = 496 nm, A, = 400
nm).
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Fig. S27 Fluorescence intensity variation of HCFH (20 uM) in the presence of Zn?* (20 uM) with

addition of different metal ions (20 uM) in H,O (pH 7.4, HEPES buffer solution), (Aey, = 496 nm,
Aex = 400 nm).
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Fig. S28 Fluorescence intensity variation of HCFH (20 uM) in the presence of Cu?* (20 uM)
with addition of different metal ions (20 uM) in H,O (pH 7.4, HEPES buffer solution). (Aey, =
496 nm, Ae = 400 nm).
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Fig. S29 (a) Fluorescence intensity of HCFH (20 uM) upon subsequent addition Cu®* and
EDTA, (b) Reversible performance of HCFH up to four cycles (at 496 nm).
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Table S1 Crystallographic data for HCFH, HCFH-Zn?" and HCFH-Cu?*

Parameters HCFH HCFH-Zn?* HCFH-Cu?*
CCDC 2289442 2343626 2328887
Empirical formula Ci16H12N,O5 CigH1sN>O¢SZn 5 Ci6H15sCuN3Oq
Formula weight 312.28 423.09 493.01
Temperature/K 293 100.15 293
Crystal system monoclinic monoclinic monoclinic
Space group P2,/c P2/c C2/c
a/lA 8.23546(5) 12.1405(7) 27.1875(9)
b/A 23.11379(13) 8.8776(5) 6.49900(10)
c/A 7.69661(5) 16.5239(12) 24.9525(6)
a/° 90 90 90
pB/e 101.9965(6) 101.958(7) 112.195(4)
v/° 90 90 90
Volume/A3 1433.074(15) 1742.27(19) 4082.2(2)
Z 4 4 8
Pealc g/cm? 1.447 1.613 1.604
wmm-! 0.925 2.736 2.056
F(000) 648.0 876.0 2088.0

Crystal size/mm?

0.23 x0.13x0.1

0.13 x0.11 x 0.09

0.25x0.2 x0.17

Radiation

Cu Ko (L= 1.54184)

CuKo (= 1.54184)

CuKo (A= 1.54184)

20 range for data collection/°

7.65 to 143.948

10.946 to 143.94

7.024 to 144.538

Index ranges

-10<h<10,-28<k<

28,-9<1<8

-14<h<14,-10<k<

10,-19<1<19

-33<h<33,-7<k
<5,-30<1<30

Reflections collected

47078

15791

15546

Independent reflections

2820 [Riy = 0.0237,
Rigma = 0.0084]

3302 [Ry = 0.1038,
Rigma = 0.0935]

3921 [Riy = 0.0667,
Riigma = 0.0498]

Data/restraints/parameters 2820/0/216 3302/0/215 3921/0/277
Goodness-of-fit on F? 1.099 1.060 1.115
. . - R1=0.0349, wR2= | R1 =0.1151, wR2 = |R1 =0.0801, wR2 =
Final R indexes [I>=20 (I)] 0.1014 0.2613 0.2073
. ) R1=0.0365, wR2 = | R1 =0.1595, wR2 = |R1=0.0876, wR2 =
Final R indexes [all data] 0.1027 0.2877 0.2134
Largest diff. peak/hole / ¢ A3 0.17/-0.17 0.73/-0.46 1.27/-0.93

a Rl = Z||F'0| - |FC||Z|F0| b RZ = [ZW(|FQO| - |1.720|)2/ZW|1:20|2]1/2
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Table S2 Bond lengths for HCFH

Bonds Length/A Bonds Length/A
04-C15 1.3750(14) C10-011 1.4013(17)
04-C16 1.3739(15) C8-C9 1.3453(18)

0O1-C4 1.3618(16) C8-Cl16 1.4564(18)

0O1-Cl 1.3630(16) C8-C7 1.4870(16)
05-C13 1.3531(14) C14-C13 1.3826(17)

02-C5 1.2196(16) Cl11-C12 1.3692(18)
03-C16 1.2038(16) C13-C12 1.3946(18)
N2-N1 1.3799(14) C5-C4 1.4611(17)
N2-C7 1.2771(16) C4-C3 1.3386(19)
N1-C5 1.3494(17) C7-Cé6 1.4967(19)
C15-C10 1.3943(16) C3-C2 1.417(2)
C15-C14 1.3796(16) C2-C1 1.325(2)
C10-C9 1.4281(16)

Table S3 Bond angles for HCFH
Bonds Angle/’ Bonds Angle/®

01-C1-C2 110.47(13) 05-C13-C14 121.88(11)
C1-C2-C3 106.82(13) C12-C11-C10 121.20(11)
C2-C3-C4 106.45(14) C15-C14-C13 118.29(11)
C6-C7-C8 120.60(12) C8-C9-C10 121.98(11)
C6-C7-N2 125.04(12) C16-C8-C7 117.45(11)
C8-C7-N2 114.35(11) C9-C8-C7 122.74(11)

C11-C12-C13 120.04(12) C9-C8-Cl16 119.67(11)
C3-C4-C5 131.00(13) C11-C10-C9 125.24(11)
C3-C4-01 110.04(12) C15-C10-C11 117.00(11)
01-C4-C5 118.92(11) C15-C10-C9 117.76(11)
03-C16-C8 126.44(12) C14-C15-C10 122.93(11)
03-C16-04 116.08(12) 04-C15-C14 116.69(10)
04-C16-C8 117.46(10) 04-C15-C10 120.38(10)
N1-C5-C4 115.15(11) C5-N1-N2 119.00(10)
02-C5-C4 120.72(12) C7-N2-N1 116.33(10)
02-C5-N1 124.10(12) C4-01-Cl 106.22(11)

C12-C13-C14 120.50(11) C16-04-C15 122.71(9)

C12-C13-05 117.62(11)
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Table S4 Fluorescence decay parameters and quantum yields of HCFH in THF-H,O (pH 7.4
HEPES buffer solution) mixtures at different fraction of water.

fw A T (ns) <t> (ns) 0] K.("s) K., (s)

£o=40%  0.098(A;)  2.411(1) 0627  2.16x10% 3.44x10° 1.58x108
0.855(A,)  0.421(1)
£,=80%  0.249(A))  2.173(t)) 1250  4.18x 103 3.34x105 7.99x 108

0.602(A,) 0.869(12)

Sfw=99.99%  0.050(A;) 2.411(1)) 0.780 2.01x 103 2.57x10° 1.28x 108

0.805(A;)  0.421(1)

Table S5 Fluorescence decay parameters and quantum yields of HCFH before and after treatment
with Zn?*/Cu?* in H,O (pH 7.4) HEPES buffer solution.

Sample A T (ns) <t> (ns) (0] K.(s) K. (CS)

HCFH 0.047(A;)  4.233(t)) 0.768 221x103 2.87x10® 1.29x 108

0.857(A2)  0.576(1>)

HCFH-Zn*  0.440(A,)  1.174(1) 2011  6.19x10% 3.07x10° 0.49 x 108

0.403(Ay)  2.923(1,)

HCFH-Cu?* 0.841(A;)  0.385(t) 0.584 0.46x 103 0.78x10° 1.71 x 108

0.104(A;)  2.195(t;)
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Table S6 Major bond lengths and bond angle for HCFH-Zn?".

Bonds Length/A Bonds Angle/°
Zn-02 2.049(5) 02-Zn- 02! 103.2(3)
Zn-02! 2.049(5) 02-Zn-03 159.0(2)
Zn-03 2.132(6) 02- Zn-03! 89.5(2)
Zn-03! 2.132(6) 02!-Zn-03 89.5(2)
Zn-N2 2.112(6) 02!-Zn-03! 159.0(2)
Zn-N2! 2.112(6) 02!-Zn-N2 98.6(2)
02-C5 1.255(9) 02-Zn- N2! 98.6(2)
03-Cl16 1.999(9) 02!-Zn-N2! 78.1(2)
N2-C7 1.297(10) 02-Zn-N2 78.1(2)
N1-N2 1.399(8) 03-Zn-03! 83.7(3)
N1-C5 1.313(9) N2!-Zn-03! 83.6(2)
Co6-C7 1.512(10) N2-Zn-03 83.6(2)
C7-C8 1.470(11) N2!'-Zn-03 100.3(2)
C8-C16 1.470(11) N2-Zn-O3! 100.3(2)
04-C16 1.395(10) N2-Zn-N2 174.8(3)
Table S7 Major bond lengths and bond angle for HCFH-Cu?".
Bonds Length/A Bonds Angle/°
Cu-02 1.918(3) 02-Cu-03 173.35(13)
Cu-03 1.927(3) 02-Cu-06 93.41(13)
Cu-06 1.948(3) 02-Cu-N2 83.39(13)
Cu-N2 1.939(3) 03-Cu-06 90.22(12)
Cu-07 2.480(4) 03-Cu-N2 92.36(13)
02-C5 1.306(5) N2-Cu-O6 172.77(14)
03-Cl16 1.243(5) 02-Cu-07 88.8(1)
N2-C7 1.278(5) 03-Cu-07 97(1)
N1-N2 1.405(5) N2-Cu-0O7 100.2(1)
N1-C5 1.306(5) 06-Cu-07 86.15(11)
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Table S8 Comparison of HCFH with other previously reported sensors.

Photophy.sical prop?rties . Sensing . Biological Ret
AIE Vlscf)ch Plez?ch Sen51‘ng Analyte Detection limit applications Miscellaneous .
romism | romism media M)
: Cu?* Cu?": 1.54 x 10”0 magns, Blc S87s, work
Mitotracking Paper strip,
9 9 » CH;CN:DMS 72+ Zn?*: 1.79 x 10 I.dive (.:ell Reve.rsibility, 9
0 (9:1, v/v) imaging Logic gates
v v v DMF:H,0 Zn**, Zn*":2.97 x 10 Live cell Reversibility, 10
(3:7, vIv) Cu? Cu?": 6.75 x 107 imaging Logic gates
DMF:H,0 .
v 2+ 2+. 7
X X (9:1, vIv) Zn Zn**: 1.1 x 10 N/A Paper strip 11
. 2 2+. -8
v » « THF:H,0 Zn*, Zn*": 1.3 x 10 N/A Real san?ple 12
(1:1, v/v) Cu?* Cu?": 1.6 x 10 analysis
CH;CN/H,O - Zn>": 3.8 x 108 .
x X X (111, viv) Zn Cu 5.8 x 107 N/A Logic gates 13
MeOH:H,0O Zn** Zn**: 7.19 x10°8
v v >
) (1:1, viv) cu¥ | Cur:2.12x107 NA NA 14
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