Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025



**Fig. S1** Structures of Ho<sup>3+</sup>, Yb<sup>3+</sup>-codoped Bi<sub>2</sub>WO<sub>6</sub> with Bi<sup>3+</sup> substitution **Table S1** Static energies of the optimized structures of Ho<sup>3+</sup>. Yb<sup>3+</sup>-codoped Bi<sub>2</sub>WO<sub>6</sub>

| I able SI          |        | gies of the | optimized st   | fuctures of filo | , 10   | $=$ coupped $B1_2 \le 0$ | 6      |
|--------------------|--------|-------------|----------------|------------------|--------|--------------------------|--------|
| Structure number   | (1)    | (2)         | (3)            | (4)              | (5)    | (6)                      | (7)    |
| Static energy (eV) | 534.27 | 534.11      | 534.19         | 534.08           | 534.12 | 534.18                   | 534.17 |
|                    |        |             | a = 12   1   1 |                  | 1 21   |                          |        |

Fig. S1 shows the possible structures of  $Bi^{3+}$  lattice sites in  $Ho^{3+}$ ,  $Yb^{3+}$ -codoped  $Bi_2WO_6$ , which are irreducible structures after accounting for the crystal symmetry and periodicity characteristics. Table S1 shows the static energies of the structures obtained after structural optimization (atom positions only) via VASP.



**Fig. S2** Structures of K<sup>+</sup>, Ho<sup>3+</sup>, and Yb<sup>3+</sup>-codoped Bi<sub>2</sub>WO<sub>6</sub> with Bi<sup>3+</sup> substitution **Table S2** Static energies of the K<sup>+</sup>, Ho<sup>3+</sup>, and Yb<sup>3+</sup>-codoped Bi<sub>2</sub>WO<sub>6</sub> structures after optimization

|                    | 8      | ,      | )      | 4      | . 0    |        |        |
|--------------------|--------|--------|--------|--------|--------|--------|--------|
| Structure number   | (1)    | (2)    | (3)    | (4)    | (5)    | (6)    | (7)    |
| Static energy (eV) | 529.01 | 529.32 | 528.85 | 528.96 | 529.08 | 529.03 | 529.19 |
| Structure number   | (8)    | (9)    | (10)   | (11)   | (12)   | (13)   | (14)   |
| Static energy (eV) | 529.09 | 529.16 | 528.89 | 528.96 | 529.25 | 529.04 | 529.01 |

| Structure number   | (15)   | (16)   | (17)   | (18)   | (19)   | (20)   | (21)   |
|--------------------|--------|--------|--------|--------|--------|--------|--------|
| Static energy (eV) | 528.60 | 528.90 | 529.10 | 528.76 | 529.15 | 528.72 | 529.12 |
| Structure number   | (22)   | (23)   | (24)   | (25)   | (26)   | (27)   | (28)   |
| Static energy (eV) | 529.14 | 528.97 | 529.21 | 529.05 | 528.90 | 529.12 | 528.64 |
| Structure number   | (29)   | (30)   | (31)   | (32)   | (33)   | (34)   | (35)   |
| Static energy (eV) | 529.04 | 529.27 | 528.77 | 529.07 | 528.97 | 528.85 | 528.80 |
| Structure number   | (36)   | (37)   | (38)   | (39)   | (40)   | (41)   | (42)   |
| Static energy (eV) | 529.38 | 529.24 | 529.02 | 529.36 | 529.12 | 529.25 | 529.14 |

Fig. S2 shows the possible structures of the Bi<sup>3+</sup> lattice sites in K<sup>+</sup>, Ho<sup>3+</sup>, and Yb<sup>3+</sup>-codoped Bi<sub>2</sub>WO<sub>6</sub>, which are irreducible structures after accounting for the crystal symmetry and periodicity characteristics. Table S2 shows the static energies of the structures obtained after structural optimization (atom positions only) via VASP.