Supporting Information for "Largely enhanced bulk photovoltaic effects in the two-dimensional $MoSi_2N_4$ monolayer photodetector by vacancydoping and bending-increased device asymmetry"

by Tingting Duan, Yongsheng Yao, Juexian Cao, Xiaolin Wei

In this supporting information, we provide useful supporting information concerning (1) The unit cell of α_1 - and α_2 -MoSi₂N₄; (2) The lattice, band gaps, and band gap types of α_1 - and α_2 -MoSi₂N₄; (3) The bandstructure and density of states of α_1 - and α_2 -MoSi₂N₄; (4) The projected density of states of α_1 - and α_2 -MoSi₂N₄; (5) The photocurrent for the photodetector with the four different vacancies center regions of α_2 -MoSi₂N₄, respectively; (6) The photocurrent for the photodetector with the three different bending angles center regions of α_2 -MoSi₂N₄, respectively; (7) The I_{max} and ER of vacancies center region of α_2 -MoSi₂N₄, respectively; (8) The I_{max} and ER of bending angle center region of α_2 -MoSi₂N₄, respectively; (9) The electronic transmission spectrum of vacancies center region of α_2 -MoSi₂N₄, respectively; (9) The

MoSi₂N₄; (10) The electronic transmission spectrum of bending center region of α_2 -MoSi₂N₄; (11) The I_{max} of N-vacancies and bending angle with 20° center region of α_2 -MoSi₂N₄.

(1) The unit cell of α_1 - and $\alpha_2 MoSi_2N_4$

Fig. S1 The structure of α_1 -MoSi₂N₄ and (b) α_2 -MoSi₂N₄ unit cell, the grayish purple, blue, and gray-blue atoms represent the Mo, Si, and N atoms, respectively.

(2) The lattice, band gaps, and band gap types of α_1 - and α_2 -MoSi₂N₄

Table S1. Lattice constants, PBE band gaps, and band gap types of $MoSi_2N_4$ in α_1 and α_2 phases.

Structure	a (Å)	c (Å)	E _g (eV)	Band type	E _g (Ref ⁴⁷)	E _g (Ref ⁴)	E _g (Ref ¹⁰)
α_1 - MoSi ₂ N ₄	2.90	2.51	1.86	Indirect	/	/	Indirect (1.74)
α ₂ - MoSi ₂ N ₄	2.89	2.50	2.10	Indirect	Indirect (2.06)	Indirect (2.02)	/

(3) The bandstructure and density of states of α_1 -and α_2 -MoSi₂N₄

Fig. S2 (a)-(d) are the bandstructure and density of states of α_1 -and α_2 -MoSi₂N₄, respectively.

(4) The projected density of states of α_1 -and α_2 -MoSi₂N₄

Fig. S3 (a) and (b) are the PDOS of α_1 and α_2 -MoSi₂N₄, respectively.

(5) The photocurrent for the photodetector with the four different vacancies center regions of α_2 -MoSi₂N₄, respectively.

Fig. S4 (a)-(d) are the photocurrent at the photon energy of 4.5 eV, 4.8 eV, and 5.4 eV for the photodetector with the four different center regions of α_2 -MoSi₂N₄, respectively.

(6) The photocurrent for the photodetector with the three different bending angles center regions of α_2 -MoSi₂N₄, respectively.

Fig. S5 (a)-(c) are the photocurrent at the photon energy of 4.5 eV, 4.8 eV, and 5.4 eV for the photodetector with the three different bending angles center regions of α_2 -MoSi₂N₄, respectively.

(7) The I_{max} and ER of vacancies center region α_2 -MoSi₂N_{4.}

Fig. S6 (a) The maximum of photocurrent and (b) extinction ratio of α_2 -MoSi₂N₄.

(8) The I_{max} and ER of bending angle center regions α_2 -MoSi₂N_{4.}

(9) The electronic transmission spectrum of vacancy center region of α_2 -MoSi₂N₄.

Fig. S8 (a) Electron transmission spectra of α_2 -MoSi₂N₄ monolayer devices with (a) defect-free, (b) Mo-defect, (c) N-defect, and (d) Si-defect systems.

(10) The electronic transmission spectrum of bending center region of α_2 -MoSi₂N₄.

Fig. S9 (a) Electron transmission spectra of α_2 -MoSi₂N₄ monolayer devices with bending angle of (a) 10°, (b) 20°, and (c) 30°, respectively.

Fig. S10 (a) The maximum photocurrent of N-vacancy and (b) bending angle with 20° of α_1 -MoSi₂N₄.