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Characterizations

Scanning electron microscopy (SEM, GeminiSEM500) transmission 

electron microscope (TEM, Talos F200X) were performed to observe the 

microstructure and morphology of the samples. X-ray diffraction patterns 

(XRD) were obtained via the Shimadzu XRD-7000s diffractometer with 

Cu Kα radiation (λ = 1.542 Å) from 20° to 80°. Raman spectroscopy of the 

samples was obtained by a Renishaw in Via Raman Microscope. The N2 

adsorption/desorption isotherms were recorded on a TriStar Ⅱ 20 
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apparatus, and the specific surface area and pore volume analysis were 

performed by Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda 

(BJH) methods, respectively. The chemical binding of the samples was 

detected by X-ray photoelectron spectroscopy (XPS, Thermo Scientific). 

The magnetic properties of products were assessed using a vibrating 

sample magnetometer (VSM, LakeShore 7307) at room temperature.  

Electromagnetic parameters were measured by vector network analyses 

(VNA, Agilent, N5227, USA) equipped with a coaxial transmission 

waveguide in the frequency range 2-18 GHz. 

Figure S1. the schematic illustration of multilayered RGA/CNP 

composites, (S1) Janus RGA/CNP, (S2) three-layer RGA/CNP, (S3) five-

layer RGA/CNP, (S4) seven-layer RGA/CNP composites. 

Figure S2. (a) SEM image and (b-e) EDS images of CNP films 



 

Figure S3. (a) The trend curves of EAB with increasing the layer thickness, 

and (b) the corresponding radar map. 

Figure S4. The Cole-Cole curves of samples



Figure S5. 3D CST far-field simulation results for samples

Table S1. The comparison among similar microwave absorbers 

Samples
RLmin(dB)/

Thickness(mm)
EABmax(GHz)/
Thickness(mm)

Refs

Co/C −38.8/1.82 4.7/1.5 [1]
Ni/C −26.3/2.3 5.2/1.8 [2]

CoNi@C -47.1/2.0 5.1/1.7 [3]
CoNi@C@rGO -48/4.5 6.24/1.6 [4]

Co2Ni1/C-800/PVDF -52/3.0 4.5/3.0 [5]
Ni@C-rGO -53.64/4.1 6.64/2.55 [6]

CoNi-C aerogels -40.69/2.41 5.7 /1.76 [7]
Co@RGA microspheres -70.4/2.2 5.65/1.98 [8]

2D CoNi/C -60.1/1.65 6.24/1.0 [9]
CoNi@carbon/RGO -41.09/1.5 5.41/1.5 [10]

Ni-MOF-rGO aerogel -51.19/1.9 6.32/1.9 [11]
CoNi/carbon foam -47.35/2.4 5.6/2.4 [12]
MXene-CNTs/Co -41.29/1.38 4.2/1.38 [13]

CoNi/C −61.02/2.0 5.2/2.0 [14]
RGA/CNP/RGA -48.03/2.7 7.14/2.8 Herein



Table S2. The order of samples in the microwave absorption properties

Microwave absorption properties The order of samples

Effective absorption bandwidth S2>S3>S4

Impedance matching (ǀZin/Z0ǀ) S2≈S3>S4

Conductive loss S4>S3>S2>S1

Polarization loss S4>S2>S3>S1

Dielectric loss tangent (tan δε) S4>S2≈S3>S1 (tan δε > 0.4)

Magnetic loss tangent (tan δμ) S4>S2≈S3≈S1 (tan δμ < 0.4)

Attenuation coefficient (α) S4>S2>S3>S1

The related theory equations: 

(1) According to the transmission line theory in the metallic backing condition, the 

calculation formula of the RL-f curves are as follows [15,16]:
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Where Z0 is the characteristic impedance of free space, Zin is the normalized input 

impedance of absorber, εr and μr are the relative complex permittivity and permeability, 

d is the layer thickness, c is the speed of light in free space and f is the frequency.

(2) According to the Debye theory, Cole–Cole semicircle model can be expressed by 

the following equations [15, 17]: 
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where τ represents relaxation time, εs and ε∞ represent static permittivity and optical 



permittivity respectively. 

(3) The eddy current loss C0 of magnetic loss materials is expressed by the following 

equation [16, 18]:
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(4) The attenuation ability of the materials can be assessed by attenuation coefficient 

(α) as followed [15, 19]:
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(5) The percentage of dielectric loss and magnetic loss can be expressed by the 

following equations: 
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where Wc, Wp, Wm represents the percentage of conductive loss, polarization loss and 

magnetic loss in the attenuation process respectively. 

(6) The RCS values can be calculated as follows [20, 21]:

                   (11)
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Where Ei and Es represent the electric field strength of the incident and scattered waves, 

respectively, S is area of the simulated plate and λ is the wavelength.
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