In-situ Construction of Multi-hierarchical CdS-DETA/In(OH)₃/Ag₂S Dual-S-Scheme Heterojunction for Accurate Depolymerizing the β-O-4 Bond in Lignin Compound

Zhi-yu Liang^a, Gui-yang Yan^a, Er-da Zhan^b, Guo-xin Zhuang^{c*}, Ying Wang^{a*}, Qiao-

ling Mo^d

^a Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry,

College of New Energy and Materials, Ningde Normal University, Fujian 352100,

China

^b college of Chemistry, Fuzhou University, 2 Xueyuan Road, University New District, Fuzhou 350108, China.

^c Scientific Research and Experiment Center, Fujian Police College, No. 59 Shoushan Road, Fuzhou, 350007, Fujian, China

^d Center of Analysis and Testing, Nanchang University, 999 Xuefu Avenue,

Nanchang, Jiangxi Province, 330031, China.

*Corresponding author. E-mail: gx_zhuang@fjpsc.edu.cn wy891203@163.com

Figure s1. XRD patterns of as-prepared (a) CdS-DETA/In(OH) $_3$ composites, and (b) CdS-DETA/In(OH) $_3$ /Ag $_2$ S composites.

Samples	BET surface area (m²/g)	Pore volume (cm ² /g)	Pore size (nm)
CdS-DETA	47.02	0.25	13.81
CI ^{0.3}	77.87	0.39	16.83
$CI^{0.3}A^2$	66.07	0.32	15.30

Table s1. BET parameters of CdS-DETA, CI^{0.3} and CI^{0.3}A² heterojunction.

Figure s2. SEM images of as-prepared CdS-DETA/In(OH)₃ composites.

Figure s3. SEM images of as-prepared CdS-DETA/In(OH)₃/Ag₂S composites.

Figure s4. C 1s high-resolution spectra of CdS-DETA, CI^{0.3} and CI^{0.3}A².

Floment	CAS DETA	C103	CT03A	Chemical	
Element	CuS-DETA	CI°	CI ^{®®} A	bond species	
C 1s	284.60	284.60	284.60	C-C	
C 1s	285.63	285.90	285.63	C-O	
C 1s	288.21	288.21	288.74	С=О	
S 2p _{1/2}	162.50	162.50	163.13	S ²⁻	
S 2p _{3/2}	161.22	161.22	161.73	S ²⁻	
Cd 3d _{3/2}	411.22	411.55	412.06	Cd^{2+}	
Cd 3d _{5/2}	404.48	404.80	405.29	Cd^{2+}	
In 3d _{3/2}	N/A	452.10	452.02	In ³⁺	
In 3d _{5/2}	N/A	444.54	445.07	In ³⁺	
Ag 3d _{3/2}	N/A	N/A	373.97	Ag^+	
Ag 3d _{5/2}	N/A	N/A	367.94	Ag^{+}	

 Table s2. XPS binding energies of the as-synthesized photocatalysts.

Figure s5. UV-Vis absorption spectra of (a) CdS-DETA/In(OH)₃ composites, and (b) CdS-DETA/In(OH)₃/Ag₂S composites.

Figure s6. GC-MS spectra for photocatalytic depolymerization of PP-ol conversion over $CI^{0.3}A^2$.

Materials	Light source	Solvent	Photocatalytic efficiency (mmol h ⁻¹ g ⁻¹)*	Ref.
CdS QDs	300 W Xe lamp	CH ₃ CN	3.33	1
Ni/CdS	Blue LEDs	CH ₃ CN/0.1 M KOH (v/v = 2/8).	0.8	2
ZIS-3	Xe lamp	$CH_3CN:H_2O(v/v = 2/3)$	3.3	3
CdS-C ₃ N ₄	Blue LEDs	$CH_{3}CN/H_{2}O(v/v = 4/1)$	5	4
CdS-SH/TiO ₂	300 W Xe lamp	CH ₃ CN	0.5	5
30% CN/ZIS	300 W Xe lamp	$CH_{3}CN:H_{2}O(v/v = 2/3)$	2.3	6
ZnIn ₂ S ₄	9.6 W blue LEDs (455 nm)	CH ₃ CN	4.5	7
Zn_4In_2S	Xe lamp (400- 780 nm), 0.6 W/cm ²	CH ₃ CN/H ₂ O (v/v=1)	2.05	8
CI ^{0.3} A ²	300 W Xe lamp	$CH_3CN:H_2O(v/v = 1/2)$	6.67	This work

Table s3. Comparison of the $CI^{0.3}A^2$ photocatalyst with reported photocatalysts.

*Photocatalytic efficiency (mmol \cdot h⁻¹·g⁻¹) = Yield of Products/ (Reaction time×Catalyst amount)

Entry	Substrate	Conversion (%)	Yield (%)	
1	OH OH	93		ЭН
2	OH O O	93	64 79	ЭН
3	O OH	92	58 75	ЮН
4		88))

Table s4. Photocatalytic depolymerization efficiency of $CI^{0.3}A^2$ towards different β -O-4 model compounds.

*Reaction conditions: lignin model compound (10 mg), catalyst (1 mg), acetonitrile solution ($V_{water}/V_{acetonitrile} = 1/2$, 1.0 ml), N₂ (1 atm), and 300 W xenon lamp.

Figure s7. XRD pattern of CI^{0.3}A² before and after the cycling experiment on the conversion of PP-ol.

Figure s8. PL spectra of CdS-DETA, CI^{0.3} and CI^{0.3}A². (λ_{ex} =325 nm)

DFT Methods

The first-principles tool-Vienna Ab initio Simulation Package(VASP) ^[9, 10] was employed to perform all density functional theory (DFT) calculations within the generalized gradient approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) ^[11] formulation. We have chosen the projected augmented wave (PAW) potentials ^{[12, ^{13]} to describe the ionic cores and take valence electrons into account using a plane wave basis set with a kinetic energy cutoff of 450 eV. Partial occupancies of the Kohn-Sham orbitals were allowed using the Gaussian smearing method and a width of 0.05 eV. For the optimization of both geometry and lattice size, the Brillouin zone integration was performed with 0.04 /Å Γ -centered *k*-point sampling ^[14]. The self-consistent calculations applied a convergence energy threshold of 10⁻⁵ eV. The equilibrium geometries and lattice constants were optimized with maximum stress on each atom within 0.02 eV Å⁻¹. The weak interaction was described by DFT+D3 method using empirical correction in Grimme's scheme ^[14]. Spin polarization method was adopted to describe the magnetic system.}

Reference

X. J. Wu, X. T. Fan, S. J. Xie, J. C. Lin, J. Cheng, Q. H. Zhang, L. Y. Chen and Y. Wang, Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions, *Nat. Catal.*, 1(10) (2018) 772-780.

[2] G. Han, T. Yan, W. Zhang, Y. C. Zhang, D. Y. Lee, Z. Cao and Y. Sun, Highly selective photocatalytic valorization of lignin model compounds using ultrathin metal/CdS, *ACS Catal.*, 9(2019) 11341-11349.

[3] S. Shao, K. Wang, J. B. Love, J. Yu, S. Du, Z. Yue and X. Fan, Water promoted photocatalytic C_{β} -O bonds hydrogenolysis in lignin model compounds and lignin biomass conversion to aromatic monomers, *Chem. Eng. J.*, 435 (2022) 134980.

[4] J. Y. Wang, Z. Z. Hu, X. T. Sun, Y. Q. Gao, J. L. Wang, J. Xu and G. Jin, Highly dispersed CdS on C_3N_4 for selective cleavage of C_β -O-4 bonds in lignin model compound under blue light, *Surf. Interfaces*, 36 (2023) 102505.

[5] S. Xu, Q. Gao, Z. Y. Hu, Y. T. Lu, Y. L. Qin and Y. L. Li, CdS-SH/TiO₂ heterojunction photocatalyst significantly improves selectivity for C-O bond breaking in lignin models, *ACS Catal.*, 13 (2023) 13941-13954.

[6] X. T. Liu, Z. J. Jiang, X. R. Cao, Z. Shen, W. Zhao, F. Wang, M. Y. Cui and C. Liang, Fabrication of s-scheme $g-C_3N_4/Zn_4In_2S_7$ heterojunction photocatalyst for enhancing selective cleavage of β -O-4 bond in lignin model compounds and lignin, *ACS Sustain. Chem. Eng.*, 11(2023) 14947-14959.

[7] N. Luo, M. Wang, H. Li, J. Zhang, T. Hou, H. Chen, X. Zhang, J. Lu, F. Wang, visible-light-driven self-hydrogen transfer hydrogenolysis of lignin models and extracts into phenolic products, *ACS Catal.*, 7 (2017) 4571-4580.

[8] J. Lin, X. Wu, S. Xie, L. Chen, Q. Zhang, W. Deng, Y. Wang, visible-light-driven cleavage of C-O linkage for lignin valorization to functionalized aromatics, *ChemSusChem.*, 12 (2019) 5023-5031.

[9] G. Kresse, J. Furthmüller, Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Comput. Mater. Sci.*, 6 (1996) 15-50.

[10] G. Kresse, J. Furthmüller, Efficient iterative schemes for Ab Initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B*, 54 (1996) 11169-11186.

[11] J. P. Perdew , K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. *Phys. Rev. Lett.*, 77 (1996) 3865-3868.

[12] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector Augmented-Wave method. *Phys. Rev. B*, 59 (1999) 1758-1775.

[13] P. E. Blöchl, Projector Augmented-Wave method. *Phys. Rev. B*, 50 (1994) 17953-17979.

[14] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations[J].*Phys. Rev. B*, 13(1976): 5188.