Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supporting information (SI) for

Ruthenium-based medium-entropy alloy oxide for hydrogen

evolution linking to biomass sucrose upcycling

Gen Liu^a, Jingjing Yang^a, Wangxi Fan^a, Shuang Dong^{b,*}, and Zhou Yang^{a,*}

^{a.} Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China.

^{b.} School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China.

*Correspondence: Zhou Yang, zhouyang@jsut.edu.cn. Shuang Dong, dongs@czu.cn.

Characterizations

The microstructure was observed by a field-emission scanning electron microscope (FE-SEM, Sigma 500), and transmission electron microscopy (TEM, JEM-2100) with selected area electron diffraction (SAED) and energy dispersive spectrometer (EDS). The chemical properties were scanned by X-ray diffraction (XRD, X'PERT POWDER, scanning rate is 10° min⁻¹) and X-ray photoelectron spectroscopy (XPS, ThermoFisher Scientific ESCALAB 250, Al target). The contents of Ru and Pd were tested by inductive coupled plasma-optical emission spectrometry (ICP-OES, Plasma 2000). The chemical product is characterized by ¹H nuclear magnetic resonance (NMR, Bruker Avance III HD, 400 MHz, solution is D_2O) and high-performance liquid chromatography (HPLC, Agilent 1260 series equipped with a UV detector, which was operated at 210 nm with Bio-Rad Aminex HPX-87H column at 50 °C, 5 mM of H₂SO₄ was used as the eluent with flow rate of 0.5 mL min⁻¹). The electrochemical measurements were performed by an electrochemical workstation (Chenhua, CHI 760E) including cyclic voltammetry (CV), linear sweep voltammetry (LSV), Chronopotentiometry (CP), electrochemical impedance spectroscopy (EIS), impedance-potential, and intensity-time (i-t) curve.

In the three-electrode system, 2 mg of sample was dispersed in 200 μ L of mixed solution (deionized water: ethanol: Nafion = 2:7:1) to form ink, and then 10 μ L of above ink was dripped on a glass carbon electrode (GCE) and dried at room temperature, which was used as the working electrode, and the Hg/HgO and graphite electrodes were used as the reference and counter electrodes, respectively. In the two-electrode system, the sample was fully mixed with acetylene black and polyvinylidene fluoride (PVDF) with a weight ratio of 8:1:1, and dispersed in appropriate N-methylpyrrolidone (NMP) to form slurry. The above slurry was coated on the nickel foam (1×1 cm) and dried. The test was performed in the C008-1 3H cell separated by the perfluorosulfonic acid proton exchange membrane.

The electrochemically active surface (ECSA) was calculated on the basis of the double-layer capacitance (C_{dl}) theory,¹

$$ECSA = C_{dl} / C_s$$

Where the slope in the plot of current densities to scan rates stands for $2C_{dl}$, and C_s is 0.04 mF cm⁻².

Faradaic efficiency (FE), conversion, and selectivity of SOR

The half-reaction formula for product from SOR in 1 M KOH+0.1 M sucrose is listed as follows:

 $C_{12}H_{22}O_{11} + 24OH^- \rightarrow 12HCOOH^+ \ 11H_2O + 24e^-$

FE of SOR is calculated based on the following equation:

 $FE (\%) = \frac{24 \times CHCOOH}{Q} \times V \times F \times 100\%$

Where, C_{HCOOH} is the concentration (mol L⁻¹) of FA; V is the volume of tested electrolyte (10 × 10⁻³ L); F is the Faradaic constant (96485 C mol⁻¹); Q is the total charge (C) passed during electrochemical reaction.²

Conversion (%) =1 -
$$\frac{nsucrose}{nsucrose0} \times 100\%$$

Selectivity (%) = $\frac{nHCOOH}{nproducts} \times 100\%$

Where, $n_{sucrose}$ is the mol of sucrose, $n_{sucrose0}$ is the mol of original sucrose, n_{HCOOH} is the mol of FA, and $n_{products}$ is the mol of all products.

Supplementary figures

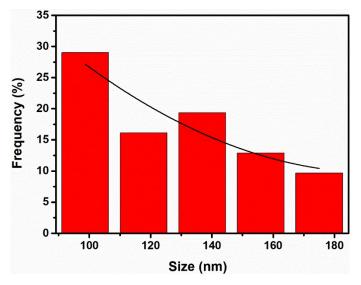


Fig. S1. Particle size distribution of Ru_{0.5}Pd_{0.5}O₂.

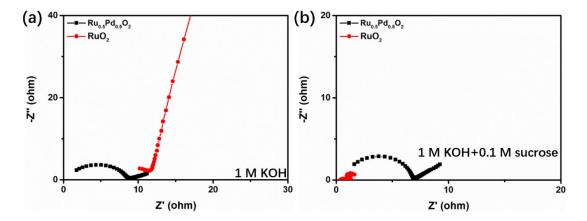


Fig. S2. EIS plots of $Ru_{0.5}Pd_{0.5}O_2$ and RuO_2 in (a) 1 M KOH and (b) 1 M KOH+0.1 M sucrose. (All the EIS test at Amplitude = 0.005 V from 1 HZ to 10^5 HZ).

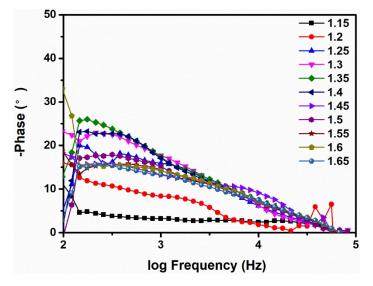


Fig. S3. In-situ bode plots of Ru_{0.5}Pd_{0.5}O₂ in 1 M KOH+0.1 M sucrose.

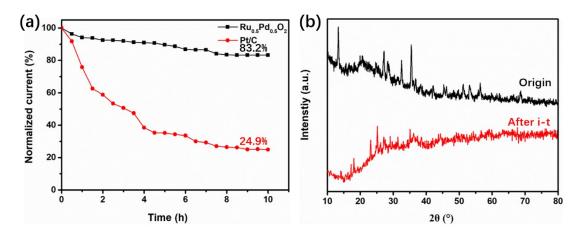
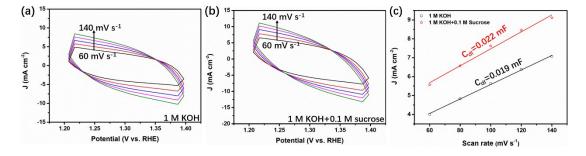
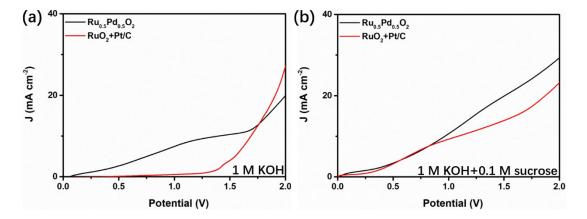




Fig. S4. (a) I-t plots of $Ru_{0.5}Pd_{0.5}O_2$ and Pt/C in 1 M KOH+0.1 M sucrose. (b) XRD pattern of $Ru_{0.5}Pd_{0.5}O_2$ after i-t test.

Fig. S5. CV curves at different scan rates of $Ru_{0.5}Pd_{0.5}O_2$ in (a) 1 M KOH and (b) 1 M KOH+0.1 M sucrose. (c) Plots of current density to scan rates.

Fig. S6. Overall water splitting LSV curves of Ru_{0.5}Pd_{0.5}O₂ and RuO₂+Pt/C system in (a) 1 M KOH and (b) 1 M KOH+0.1 M sucrose.

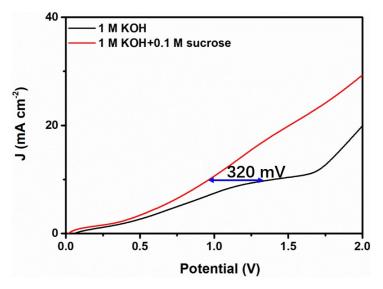
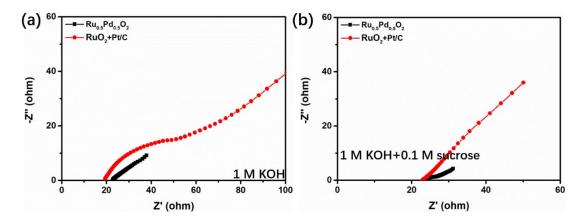
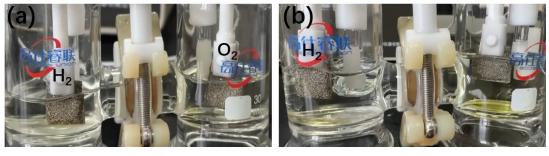




Fig. S7. Overall water splitting LSV curves of $Ru_{0.5}Pd_{0.5}O_2$ in 1 M KOH and 1 M KOH+0.1 M sucrose.

Fig. S8. EIS plots of $Ru_{0.5}Pd_{0.5}O_2$ and RuO_2+Pt/C system in (a) 1 M KOH and (b) 1 M KOH+0.1 M sucrose by the two-electrode method. (All the EIS test at Amplitude = 0.005 V from 1 HZ to 10^5 HZ).

1 M KOH

1 M KOH+0.1 M sucrose

Fig. S9. Overall water splitting photos of Ru_{0.5}Pd_{0.5}O₂ loading on Ni foams in (a) 1 M KOH and (b) 1 M KOH+0.1 M sucrose.

Supplementary tables

MEAO	Content of Ru	Content of Pd	Molar ratio of Ru to
	(ppm)	(ppm)	Pd
$Ru_{0.5}Pd_{0.5}O_2$	585.9	573.2	1.07

Table S1. The contents of metals in the MEAO tested by ICP-OES

References

- Z. Yang, H. Chen, M. Xiang, C. Yu, J. Hui and S. Dong, *Int. J. Hydrogen Energy*, 2022, 47, 31566-31574.
- Y. Liu, Z. Chen, Y. Yang, R. Zou, B. Deng, L. Zhong, K. P. Loh and X. Peng, *Appl. Catal.*, *B*, 2024, 331, 122559.