Electronic Supporting Information

Modulation of Luminescent Behaviour in *N*-Heterocyclic Thione

Joginder Singh,^a Gopendra Muduli,^a Sabari Veerapathiran,^a Arushi Rawat, ^b Muneshwar Nandeshwar, ^a Abhilash Sahu,^b Kohsuke Matsumoto,^b Osamu Tsutsumi, ^b and Ganesan Prabusankar *^a

[a] Mr. Joginder Singh, Mr. Gopendra Muduli, Dr. Sabari Veerapathiran, Dr. Muneshwar

Nandeshwar and Prof. Dr. Ganesan Prabusankar, Organometallics and Materials

Chemistry Lab, Department of Chemistry, Indian Institute of Technology Hyderabad,

Kandi, Sangareddy, Telangana, India-502285

E-mail: prabu@chy.iith.ac.in

[b] Ms. Arushi Rawat, Abhilash Sahu, Kohsuke Matsumoto, and Prof. Dr. Osamu Tsutsumi, Department of Applied Chemistry,

Ritsumeikan University, Kusatsu 525-8577, Japan.

E-Mail: tsutsumi@sk.ritsumei.ac.jp

Figure no.	Description	Page no.		
Figure S1	¹ H NMR spectrum of MPIT in CDCl ₃ at 25 °C.	5		
Figure S2	¹³ C NMR spectrum of MPIT in CDCl ₃ at 25 °C.	6		
Figure S3	¹ H NMR spectrum of L^2 in CDCl ₃ at 25 °C.	7		
Figure S4	¹ H NMR spectrum of DPPIT in CDCl ₃ at 25 °C.	8		
Figure S5	¹³ C NMR spectrum of L^2 in CDCl ₃ at 25 °C.			
Figure S6	¹³ C NMR spectrum of DPPIT in CDCl ₃ at 25 °C.	10		
Figure S7	¹ H NMR spectrum of L^3 in CDCl ₃ at 25 °C.	11		
Figure S8	¹ H NMR spectrum of TPPIT in CDCl ₃ at 25 °C.	12		
Figure S9	¹³ C NMR spectrum of L ³ in CDCl ₃ at 25 °C.	13		
Figure S10	Figure S10 ¹³ C NMR spectrum of TPPIT in CDCl ₃ at 25 °C.			
Figure S11	FT-IR spectrum of MPIT at 25 °C (ATR method).	15		
Figure S12	FT-IR spectrum of DPPIT at 25 °C (ATR method).	16		
Figure S13	FT-IR spectrum of TPPIT at 25 °C (ATR method).	17		
Figure S14	Lifetime measurement graph of MPIT in CH ₂ Cl ₂ .	18		
Figure S15	Residual graph of lifetime measurement of MPIT in CH ₂ Cl ₂ .	18		
Figure S16	Lifetime measurement graph of MPIT in crystalline state.	19		
Figure S17	Residual graph of lifetime measurement of MPIT in	19		
0	crystalline state.			
Figure S18	Lifetime measurement graph of DPPIT in CH ₂ Cl ₂ .	20		
Figure S19	Residual graph of lifetime measurement of DPPIT in CH ₂ Cl ₂ .	20		
Figure S20	Lifetime measurement graphs of DPPIT in the crystalline state.	21		
Figure S21	Figure S21Residual graph of lifetime measurement of DPPIT in crystalline state.			
Figure S22	Lifetime measurement graph of TPPIT in CH ₂ Cl ₂ .	23		
Figure S23	Residual graph of lifetime measurement of TPPIT in CH ₂ Cl ₂ .	23		
Figure S24	Lifetime measurement graphs of TPPIT in crystalline state.	24		
Figure S25	Residual graph of lifetime measurement of TPPIT in crystalline state.	25		
Figure S26	Diffused reflectance spectrum of MPIT, DPPIT and TPPIT.	26		
Figure S27	Tauc's plot for direct band gap energies of MPIT, DPPIT and TPPIT.	27		
Figure S28	AIE test for MPIT , DPPIT and TPPIT in THF/Water.	28		
Figure S29	Integrated fluorescence intensity plot for relative Quantum	29		
_	yield ($f = 0.89$) using fluorescence as reference.			
Figure S30	Cyclic voltammetry plot of MPIT, DPPIT and TPPIT (0.3	30		
	mM CH ₃ CN solution) using Ag/AgCl as reference electrode,			
	platinum electrode as working and 0.1M TBAClO ₄ as			
	supporting electrolyte.			
Figure S31	HRMS spectra for DPPIT (b) and TPPIT (c).	31		
Figure S32	Molecular packing of DPPIT along a(i), b(ii) and c(iii) axis.	32		
Figure S33	Molecular packing of TPPIT along a(i), b(ii) and c(iii) axis.	33		
Figure S34	Optimised structures of MPIT(i), DPPIT (ii) and TPPIT (iii).	34		
Figure S35	Frontier molecular orbitals of MPIT .	35		
Figure S36	Frontier molecular orbitals of DPPIT .	36		

Figure S37	Frontier molecular orbitals of TPPIT .	37
Figure S38	Visualization of (a) intramolecular contacts in MPIT using	38
	NCI analysis with blue-green-red scheme over the $-0.05 <$	
	$sign(\lambda_2)\rho < 0.05$ a.u. in 3D. Here, ρ means the density of the	
	electron, and sign (λ_2) is the sign of the second largest	
	eigenvalue of the Hessian matrix of p. The interaction	
	between sulfur and hydrogen in green color suggests van der	
	Waals interactions. (b) The scatter graph plot of RDG vs.	
	sign(λ_2) ρ is also depicted along with the isosurface plot.	
Figure S39	Visualization of (a) intramolecular contacts in DPPIT using	39
	NCI analysis with blue-green-red scheme over the -0.05	
	$<$ sign $(\lambda_2)\rho < 0.05$ a.u. in 3D. Here, ρ means the density of the	
	electron, and sign (λ_2) is the sign of the second largest	
	eigenvalue of the Hessian matrix of ρ . The interaction	
	between sulfur and hydrogen in green color suggests van der	
	Waals interactions. (b) The scatter graph plot of RDG vs.	
	sign(λ_2) ρ is also depicted along with the isosurface plot.	
Figure S40	Visualization of (a) intramolecular contacts in TPPIT using	40
	NCI analysis with blue-green-red scheme over the -0.05	
	$<$ sign $(\lambda_2)\rho$ < 0.05 a.u. in 3D. Here, ρ means the density of the	
	electron, and sign (λ_2) is the sign of the second largest	
	eigenvalue of the Hessian matrix of ρ . The interaction	
	between sulfur and hydrogen in green color suggests van der	
	Waals interactions. (b) The scatter graph plot of RDG vs.	
	sign(λ_2)p is also depicted along with the isosurface plot.	
Figure S41	Ground state electron cloud of MPIT(a), DPPIT(b) and	41
D: 0.40		10
Figure S42	Calculated UV-V is spectra of MIPIT(1), DPPIT (11) and $TDDIT$ (11) and	42
F ' G 4 2	IPPII (111) by ID-DF1.	42
Figure S43	Hirshfeld surface mapping of MPIT shows various	43
F' C 4 4	representations of non-covalent interactions.	4.4
Figure S44	Hirshfeld surface interaction and fingerprint plots of MPT	44
D' 047	show various kinds of non-covalent interactions.	4.5
Figure S45	Hirshfeld surface mapping of DPP11 shows various	45
D' 046	representations of non-covalent interactions.	16
Figure S46	Hirshfeld surface interaction and fingerprint plots of DPPII	46
D' 0.4 7	show various kinds of non-covalent interactions.	47
Figure S47	Hirshfeld surface mapping of IPPII shows various	4/
D' 0.40	representations of non-covalent interactions.	40
Figure S48	Hirshfeld surface interaction and fingerprint plots of IPPII	48
Figure C40	SHOW VARIOUS KINDS OF NON-COVALENT INTERACTIONS.	40
Figure S49	DOS spectra of NIFII , DPPII and IPPII using ID-DFT	49
Figure 950	Calculation in the range of -20 to 15 eV.	50
rigure 550	ritoioiuminescence properties of solid film MP11, DPP11	50
	and IFFII , (a) Emission-Excitation spectra of films, (b) CIE	
	unagram, (c) snaps of minis under amolent and $\cup v$ fight and Lifetime decay for MDIT (d) DDDIT (c) and TDDIT (C)	
	Liteume decay for WIFII (d), DPPII (e) and IPPII (f).	

Table no.	Table content	Page no.
Table S1	Structural parameters of DPPIT and TPPIT .	51
Table S2	Selected bond parameters for DPPIT and TPPIT .	52
Table S3	Selected bond parameters for optimised MPIT, DPPIT and TPPIT.	53
Table S4	Energy level of frontier molecular orbitals for MPIT , DPPIT and TPPIT .	54
Table S5	TD-DFT calculated oscillator strength and probable transition of MPIT .	55
Table S6	TD-DFT calculated oscillator strength and probable transition of DPPIT .	56
Table S7	TD-DFT calculated oscillator strength and probable transition of TPPIT .	57

Figure S1: ¹H NMR spectrum of MPIT in CDCl₃ at 25 °C.

Figure S2: ¹³C NMR spectrum of MPIT in CDCl₃ at 25 °C.

Figure S3: ¹H NMR spectrum of L² in CDCl₃ at 25 °C.

Figure S4: ¹H NMR spectrum of DPPIT in CDCl₃ at 25 °C.

Figure S5: ¹³C NMR spectrum of L² in CDCl₃ at 25 °C.

Figure S6: ¹³C NMR spectrum of DPPIT in CDCl₃ at 25 °C.

Figure S9: ¹³C NMR spectrum of L³ in CDCl₃ at 25 °C.

Figure S10: ¹³C NMR spectrum of TPPIT in CDCl₃ at 25 °C.

Figure S11: FT-IR spectrum of MPIT at 25 °C (ATR method).

Figure S12: FT-IR spectrum of DPPIT at 25 °C (ATR method).

Figure S13: FT-IR spectrum of TPPIT at 25 °C (ATR method).

Figure S14: Lifetime measurement graph of MPIT in CH₂Cl₂.

Figure S15: Residual graph of lifetime measurement of MPIT in CH₂Cl₂.

Figure S16: Lifetime measurement graph of MPIT in crystalline state.

Figure S17: Residual graph of lifetime measurement of MPIT in crystalline state.

Figure S18: Lifetime measurement graph of DPPIT in CH₂Cl₂.

Figure S19: Residual graph of lifetime measurement of DPPIT in CH₂Cl₂.

Figure S20: Lifetime measurement graphs of DPPIT in crystalline state.

Figure S21: Residual graphs of lifetime measurement of DPPIT in crystalline state.

Figure S22: Lifetime measurement graph of TPPIT in CH₂Cl₂.

Figure S23: Residual graph of lifetime measurement of TPPIT in CH₂Cl₂.

Figure S24: Lifetime measurement graphs of TPPIT in crystalline state.

Figure S25: Residual graphs of lifetime measurement of TPPIT in crystalline state.

Figure S26: Diffused reflectance spectrum of MPIT, DPPIT and TPPIT.

Figure S27: Tauc's plot for direct band gap energies of MPIT, DPPIT and TPPIT.

Figure S28: AIE test for MPIT, DPPIT and TPPIT in THF/Water.

Figure S29: Integrated fluorescence intensity plot for relative Quantum yield using fluorescein ($\phi_f = 0.89$) as reference.

Figure S30: Cyclic voltammetry plot of **MPIT**, **DPPIT** and **TPPIT** (0.3 mM CH₃CN solution) using Ag/AgCl as reference electrode, platinum electrode as working and 0.1M TBAClO₄ as supporting electrolyte.

Figure S31: HRMS spectra for DPPIT(b) and TPPIT(c).

Figure S32: Molecular packing of DPPIT along a(i), b(ii) and c(iii) axis.

Figure S33: Molecular packing of TPPIT along a(i), b(ii) and c(iii) axis.

Figure S34: Optimized structures of MPIT(i), DPPIT (ii) and TPPIT (iii).

Figure S35: Frontier molecular orbitals of MPIT.

LUMO+3

LUMO+2

LUMO+1

LUMO

Figure S36: Frontier molecular orbitals of DPPIT.

LUMO+3

LUMO+2

LUMO+1

LUMO

НОМО-3

номо

Figure S37: Frontier molecular orbitals of TPPIT

•

Figure S38: Visualization of (a) intramolecular contacts in **MPIT** using NCI analysis with blue-green-red scheme over the $-0.05 < \text{sign}(\lambda_2)\rho < 0.05$ a.u in 3D. Here, ρ means the density of the electron, and sign (λ_2) is the sign of the second largest eigenvalue of the Hessian matrix of ρ . The interaction between sulfur and hydrogen in green color suggests van der Waals interactions. (b) The scatter graph plot of RDG vs. sign(λ_2) ρ is also depicted along with the isosurface plot.

(b)

(a)

(a)

Figure S39: Visualization of (a) intramolecular contacts in **DPPIT** using NCI analysis with blue-green-red scheme over the $-0.05 < \text{sign}(\lambda_2)\rho < 0.05$ a.u in 3D. Here, ρ means the density of the electron, and sign (λ_2) is the sign of the second largest eigenvalue of the Hessian matrix

of ρ . The interaction between sulfur and hydrogen in green color suggests van der Waals interactions. (b) The scatter graph plot of RDG vs. sign(λ_2) ρ is also depicted along with the isosurface plot.

Figure S40: Visualization of (a) intramolecular contacts in **TPPIT** using NCI analysis with blue-green-red scheme over the $-0.05 < \operatorname{sign}(\lambda_2)\rho < 0.05$ a.u in 3D. Here, ρ means the density of the electron, and sign (λ_2) is the sign of the second largest eigenvalue of the Hessian matrix of ρ . The interaction between sulfur and hydrogen in green color suggests van der Waals interactions. (b) The scatter graph plot of RDG vs. sign(λ_2) ρ is also depicted along with the isosurface plot.

Figure S41: Ground state electron cloud of MPIT(a), DPPIT(b) and TPPIT(c).

Figure S42: Calculated UV-Vis spectra of MPIT(i), DPPIT(ii) and TPPIT(iii) by TD-DFT.

 d_{norm}

 $d_{\rm e}$

di

Shape index

Curvedness

Fragment patch

Figure S43: Hirshfeld surface mapping of MPIT shows various representations of noncovalent interactions.

Figure S44: Hirshfeld surface interaction and fingerprint plots of MPIT show various kinds of non-covalent interactions.

Figure S45: Hirshfeld surface mapping of DPPIT shows various representations of noncovalent interactions

Figure S46: Hirshfeld surface interaction and fingerprint plots of DPPIT show various kinds of non-covalent interactions.

Figure S47: Hirshfeld surface mapping of TPPIT shows various representations of noncovalent interactions.

Figure S48: Hirshfeld surface interaction and fingerprint plots of TPPIT show various kinds of non-covalent interactions.

Figure S49: DOS spectra of **MPIT**, **DPPIT** and **TPPIT** using TD-DFT calculation in the range of -20 to 15 eV.

Figure S50: Photoluminescence properties of solid film MPIT, DPPIT and TPPIT, (a) Emission-Excitation spectra of films, (b) CIE diagram, (c) snaps of films under ambient and UV light and Lifetime decay for MPIT (d), DPPIT (e) and TPPIT (f).

	DPPIT	TPPIT
Empirical formula	$C_{28}H_{24}N_2S$	$C_{40}H_{32}N_2S$
Formula weight	420.55	572.73
Temperature/K	298	298
Crystal system	orthorhombic	orthorhombic
Space group	$Pna2_1$	Pnma
a/Å	20.9290(16)	16.8230(16)
b/Å	10.4742(8)	20.529(3)
c/Å	10.6843(8)	9.2298(11)
α/°	90	90
β/°	90	90
γ/°	90	90
Volume/Å ³	2342.2(3)	3187.6(6)
Z	4	4
$\rho_{calc}g/cm^3$	1.193	1.194
μ/mm-1	0.155	0.132
F(000)	888.9	1209.1
Crystal size/mm ³	$0.27 \times 0.21 \times 0.17$	$0.26 \times 0.13 \times 0.05$
Radiation	$MoK_{\underline{\alpha}} (\lambda = 0.71073)$	$MoK_{\underline{\alpha}} (\lambda = 0.71073)$
2Θ range for data	3.9 to 54.78	4.84 to 54.28
collection/°		
Index ranges	$-26 \le h \le 26, -13 \le k \le$	$-20 \le h \le 21, -26 \le k \le$
	$13, -13 \le 1 \le 13$	$25, -11 \le 1 \le 11$
Reflections collected	66460	26722
Independent reflections	$5213 [R_{int} = 0.1111,$	$3609 [R_{int} = 0.1056,$
	$R_{sigma} = 0.0568$]	$R_{sigma} = 0.0650$]
Data/restraints/parameters	5213/1/282	3608/0/230
Goodness-of-fit on F ₂	1.038	1.64
Final R indexes [I>= 2σ	$R_1 = 0.0476, wR_2 =$	$R_1 = 0.0622, wR_2 =$
(I)]	0.1150	0.1352
Final R indexes [all data]	$R_1 = 0.1017, wR_2 =$	$R_1 = 0.1036, wR_2 =$
	0.1483	0.1582
Largest diff. peak/hole / e Å ⁻³	0.20/-0.29	0.27/-0.29

 Table S1: Structural parameters for DPPIT and TPPIT.

 Table S2: Selected bond parameters for DPPIT and TPPIT.

S.no	Atom	Atom	Atom	DPPIT (°)	TPPIT (°)
1.	N1	C1	S1	128.4(2)	128.0(2)
2.	N2	C1	S1	127.4(2)	127.3(2)
3.	N2	C1	N1	104.2(2)	104.7(2)
4.	C1	N1	C2	123.2(2)	123.6(2)

Selected bond angles

Selected bond distance

S.no.	Atom	Atom	DPPIT (Å)	TPPIT (Å)
1.	S1	C1	1.666(3)	1.650(3)
2.	N1	C2	1.438(3)	1.438(3)
3.	N1	C1	1.368(3)	1.358(4)
4.	N2	C1	1.370(3)	1.365(3)

Table S3: Selected bond parameters for optimized MPIT, DPPIT and TPPIT.

S.no	Atom	Atom	Atom	MPIT (°)	DPPIT (°)	TPPIT (°)
1.	N1	C1	S1	129.13	129.07	129.02
2.	N2	C1	S1	127.11	127.13	127.13
3.	N2	C1	N1	103.76	103.80	103.85
4.	C1	N1	C2	124.74	124.42	124.23

Selected bond angles

Selected bond distance

S.no.	Atom	Atom	MPIT (Å)	DPPIT (Å)	TPPIT (Å)
1.	S1	C1	1.6787	1.6810	1.6835
2.	N1	C2	1.4399	1.4402	1.4412
3.	N1	C1	1.3767	1.3781	1.3794
4.	N2	C1	1.3897	1.3873	1.3850

 Table S4: Energy level of frontier molecular orbitals for MPIT, DPPIT and TPPIT.

Molecular Orbital	MPIT (eV)	DPPIT (eV)	TPPIT (eV)
LUMO+3	-0.9469561	-5.15655726	-5.227851089
LUMO+2	-0.400007	-5.197918566	-5.256695156
LUMO+1	-0.2312967	-5.234381821	-5.286355564
LUMO	-1.278118	-5.301593939	-5.32363516
НОМО	-4.70811	-7.225983014	-7.241765616
HOMO-1	-5.392207	-7.796333622	-7.800687443
НОМО-2	-6.50297	-9.090234929	-9.09132338
НОМО-3	-6.548419	-9.69759302	-9.759907089
E (LOMO-HUMO)	3.429994	1.924389074	1.918130456

 Table S5: TD-DFT calculated oscillator strength and probable transition of MPIT.

Excited State	Energy (eV)	Wavelength (nm)	Osc. Strength	Major contribution
1	1.9224	638.30	0.0000	H-1 to L H to L
2	2.8251	438.87	0.0340	H to L (98%)
3	3.1297	396.16	0.0000	H-4 to L H to L+2 H to L+3
4	3.2762	378.44	0.0000	H-1 to L H to L+2
5	3.2787	372.57	0.0000	H-1 to L+2
6	3.7786	328.12	0.0000	H to L+1

Excited State	Energy (eV)	Wavelength (nm)	Osc. Strength	Major contribution
1	2.8531	434.55	0.0332	H to L (98%)
2	3.3848	366.30	0.000	H-1 to L (98%)
3	3.7062	334.5318	0.0004	H to L+1 (96%) H toL+2 (2%)
4	3.8432	322.61	0.0052	H to L+1 (2%) H to L+2 (93%) H to L+4 (3%)
5	4.0415	306.78	0.003	H to L+3 (98%)
6	4.2333	292.88	0.011	H to L+2 (3%) H to L+4 (20%) H to L+5 (75%)

Table S6: TD-DFT calculated oscillator strength and probable transition of **DPPIT**.

Excited State	Energy (eV)	Wavelength (nm)	Osc. Strength	Major Contribution
1	2.8800	430.50	0.0311	H to L (98%)
2	3.4453	359.86	0.0000	H-1 to L (98%)
3	3.6346	341.12	0.0003	H to L+1 (98%)
4	3.7319	332.23	0.0026	H to L+2 (96%) H to L+6 (3%)
5	4.0187	308.52	0.0001	H to L+3 (99%)
6	4.0935	302.88	0.0048	H to L+4 (96%) H to L+6 (3%)
7	4.1200	300.93	0.0001	H to L+5 (99%)
8	4.2276	293.28	0.0464	H to L+2 (2%) H to L+6 (69%) H to L+7 (23%) H to L+11 (2%)

 Table S7: TD-DFT calculated oscillator strength and probable transition of TPPIT.