Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Improving the Current Stability of Perovskite Quantum Dot Phototransistors

Utilizing the Ferrocene–Cyclodextrin Host–Guest Supramolecules

as a Floating Gate Dielectric

Yi-Wen Chen, ^a Ya-Shuan Wu, ^b Ender Ercan, ^c Takuya Isono, ^d Toshifumi Satoh, ^{d,e,f}

Cheng-Liang Liu,^{g,h} Yan-Cheng Lin,^{i,h*} Chen-Tsyr Lo,^{a*} and Wen-Chang Chen^{b,h*}

^aDepartment of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10617 Taiwan.

^bDepartment of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.

^cDepartment of Chemical Engineering, Yuan Ze University, Taoyuan 320315, Taiwan.

^dDivision of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.

^eList Sustainable Digital Transformation Catalyst Collaboration Research Platform (ICReDD List-PF), Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan.

^fDepartment of Chemical & Materials Engineering, National Central University, Taoyuan 320317, Taiwan.

^gDepartment of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.

^{*h*}Advanced Research Center of Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan.

ⁱDepartment of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.

*Corresponding authors. E-mail: ycl@gs.ncku.edu.tw (Y.-C. Lin); lochentsyr@mail.ntust.edu.tw (C.-T. Lo); chenwc@ntu.edu.tw (W.-C. Chen)

Table S1. Summary of the PL and TRPL parameters of PS and PSQD. Note that all samples have been deposited with BPE-PDI to form the bilayered films (polymer/BPE-PDI).

Sample	PLQY (%)	$A_{1}(\%)^{(b)}$	7₁ (ns) (b)	$A_{2}(\%)^{(b)}$	$ au_2$ (ns) $^{(b)}$	7_{avg} (ns) (c)
PS	12.95	9.89	0.79	90.11	0.30	1.55
PSQD	13.30	24.80	0.61	75.20	0.23	0.71

^(a) Photoluminescence quantum yield excited by a 365-nm light source. ^(b) Biexponential function: $I_{\rm f}(t) = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)$, where $I_{\rm f}(t)$ is the fluorescent intensity, A_1 and A_2 are the scaling constant, t is the fluorescent decay time, τ_1 and τ_2 are the fitted time constants, respectively. The TRPL measurement was conducted with a 375-nm laser. ^(c) The averaged lifetime ($\tau_{\rm avg}$) is calculated by $\tau_{\rm avg} = (A_1 \times \tau_1^2 + A_2 \times \tau_2^2)/(A_1 \times \tau_1 + A_2 \times \tau_2)$.

Figure S1. Image of the CD@QD solution in chlorobenzene under 365-nm illumination.

Figure S2. Cyclic voltammetry profiles of PS and PVFc polymers measured using an Ag/AgCl reference electrode, a Pt auxiliary electrode, and an ITO glass working electrode coated with the studied materials.

Figure S3. (a) AFM height images of BPE-PDI. (b) TR-PL 2D contour plots and (c) the corresponding 1D decay profiles of the BPE-PDI film under 375-nm laser excitation.

Figure S4. (a–c) Transfer curves and (d–f) transient response of the phototransistor detectors comprising (a,d) PVFc, (b,e) FcQD-1, and (c,f) FcQD-3. The transfer curves characteristics were measured in the dark and under light illumination. The measurements were conducted at a fixed $V_d = 100$ V with a 405 nm light (16.96 mW cm⁻²).

Figure S5. Transfer characteristics of the CD@QD phototransistor after thermal treatment at 60 °C. The drain current was measured under dark conditions at $V_d = 100$ V.

Figure S6. Output characteristics of the phototransistors based on (a) PVFc, (b) FcQD-1, (c) FcQD-2, and (d) FcQD-3. The V_d was swept from 0 to 100 V in the absence of a gate bias ($V_g = 0$ V) under 405-nm illumination (16.96 mW cm⁻²).

Figure S7. (a) Photoresponsivity and (b) specific detectivity of PVFc and CD@QD-PVFc photodetectors measured under various light intensities. The device parameters were determined from the temporal current characteristics at $V_{\rm d} = 100$ V and $V_{\rm g} = 0$ V.

Figure S8. The endurance test of the CD@QD phototransistor, consisting of 10 cycles with 5 s of irradiation followed by 10 s of dark conditions. Note that the operating parameters in this test are $V_d = 100$ V and 405-nm light (16.96 mW cm⁻²).

Figure S9. (a,b) AFM height images of PS and PSQD films. The lower part of each image shows the topography after thermal evaporation of BPE-PDI. (c) TR-PL 2D contour plots and (d) the corresponding 1D decay profiles of the bilayered films (polymer/BPE-PDI) under 375-nm laser excitation.

Figure S10. Output characteristics of phototransistors based on (a) PS and (b) PSQD. The V_d was swept from 0 to 100 V in the absence of a gate bias ($V_g = 0$ V) under 405-nm illumination (16.96 mW cm⁻²).

Figure S11. Transfer characteristics of the phototransistor device based on the PSQD hybrid film. The drain current was measured at $V_d = 100$ V. The photowriting was performed under 405 nm illumination (16.96 mW cm⁻²), and the electrical erasure was achieved by applying $V_g = 100$ V for 1 s at $V_d = 0$ V.