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Fig. S1 Cross-sectional transmission electron microscope (TEM) image of the QLED

device.
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Fig. S2 Absorption spectra (dashed lines) and PL spectra (solid lines) of QDs solutions.

The red, green, and blue QDs employed in this work are based on CdSe/ZnS core-shell

structures. The emission peaks for the red, green, and blue QDs are centered at 620 nm,

525 nm, and 457 nm, respectively, with corresponding PLQYs of ~70%, ~90%, and
~50%. The absorption edges of the red, green, and blue QDs span 600-650 nm, 500-

550 nm, and 425-475 nm, respectively, consistent with their bandgap-dependent optical

properties.
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Fig. S3 Thickness of HTLs detected by film thickness tester. Thickness of (a) and (b)
TFB film, (c¢) and (d) PF8Cz film, and (e) and (f) TFB@PF8Cz film.
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Fig. S4 Surface roughness of HTLs. AFM images of (a) TFB, (b) PF8Cz, and (c)
TFB@PF8Cz films.
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Fig. SS Optical properties of materials. UPS spectra of TFB, PF8Cz, and TFB@PF8Cz
films (a) in the cutoff and (b) in the onset regions. (c) UV-Vis absorption spectra and
(d) Tauc’s plot for band gap determination of blended HTL with different PF8Cz ratios.
According to the secondary electron cutoff edge of UPS spectra, the HOMO levels of
TFB, PF8Cz and TFB@PF8Cz are all determined to be -5.3 eV. The optical band gaps
of TFB and PF8Cz are 2.93 eV and 3.14 eV, respectively. The LUMO levels of TFB
and PF8Cz are -2.37 eV and -2.16 eV, respectively. For the TFB@PF8Cz HTL, its
LUMO level is between -2.37 ¢V and -2.16 eV, which is consistent with the tunable

absorption band edge observed at different component ratios.
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Fig. S6 Performance of NiO-based QLEDs with different HTLs. (a)J-V, (b) L-V, (c)
CE-L, and (d) PE-L curves of QLEDs with different HTLs.

We fabricated QLEDs using five distinct HTL ratios: pure TFB, TFB6@PF8Cz2,
TFB4@PF8Cz4, TFB2@PF8Cz6, and pure PF8Cz. Among these, the TFB QLED
exhibited the highest current density, attributable to TFB's high hole mobility, whereas
the PF8Cz QLED showed the lowest current density owing to PF8Cz's inferior hole
mobility. As the PF8Cz ratio increased from 0 to 2 mg mL-!, a significant reduction in
leakage current was observed, likely due to electron blocking by PF8Cz's shallow
LUMO level. This decrease in leakage current continued as the PF8Cz ratio rose to 4
and 6 mg mL!. Conversely, an increase in TFB ratio from 0 to 8 mg mL-! led to a
gradual rise in injection current. In the TFB4@PF8Cz4 QLED, an optimal balance
between TFB's enhanced hole transport and PF8Cz's electron leakage blocking was

achieved, resulting in superior performance.
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Fig. S7 The EL spectrum and CIE schematic diagram of the red QLED. The CIE
coordinates are X=0.68, Y=0.33.
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Fig. S8 The statistics of device peak CEs.
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Fig. S9 PL excitation spectra of (a) TFB, (b) PF8Cz, and (¢) TFB@PF8Cz films.

The optimal excitation wavelengths of TFB, PF8Cz, and TFB@PF8Cz films are 390

nm, 340 nm, and 348 nm, respectively.
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Fig. S10 (a)~(c) PL spectra of HTL and HTL/QDs films at the excitation wavelength
of TFB at 390 nm. (d)~(f) PL spectra of HTL and HTL/QDs films at the excitation
wavelength of PF8Cz at 340 nm. (g)~(i) PL spectra of HTL and HTL/QDs films at the
excitation wavelength of TFB@PF8Cz at 348 nm.

The PL emission spectra of the three HTLs were measured at their corresponding

excitation wavelengths. Results indicated that TFB@PF8Cz HTL consistently

exhibited the highest PLQE, suggesting enhanced hole transfer.
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Fig. S11 TrPL spectra of (a) TFB, (b) PF8Cz, and (c) TFB@PF8Cz films before and

after the deposition of the QDs layer.



Fig. S12 J-V curves of hole-only device (ITO/NiO,/HTLs/QDs/TCTA/MoO;/Ag) and
electron-only device (ITO/ZnMgO/QDs/ZnMgO/Ag).
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Fig. S13 Absorption spectra and the first derivative of absorption spectra. (a) and (b)

——
o,

-
@

Absorbance (a.u.)
°
n

| 4
N

0.0

o
@
T

®
S—

°
T

TFB@PF8Cz

a & o
kY o @
T T T

Absorbance (a.u.)

-
[
T

0.0 -

Wavelength (nm)

340 360 380 400 420 440 460 480 500

340 360 3B0 400 420 440 460 480 500

Wavelength (nm)

340 360 380 400 420 440 460 480 500

Wavelength (nm)

(e~

Uk

Wavelength (nm)

Wavelength (nm)

Wavelength (nm)

are TFB film. (c) and (d) are PF8Cz film. (e) and (f) are TFB@PF8Cz film.
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Fig. S14 Performance of green and blue NiO,-based QLEDs with different HTLs. (a)
EL spectra and CIE schematic diagram of green NiOy-based QLEDs. The CIE
coordinates are X=0.16, Y=0.77. (b) J-L-V curves and (c) CE-L and PE-L curves of
green NiOy-based QLEDs with three different HTLs. (d) EL spectra and CIE schematic
diagram of blue NiOy-based QLEDs. The CIE coordinates are X=0.15, Y=0.04. (e) J-L-
V curves and (f) CE-L and PE-L curves of blue NiO,-based QLEDs with three different
HTLs.
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Fig. S15 The J-V characteristics of hole-only devices and electron-only devices. The
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Table S1. PLQE values of three different HTLs at specific excitation wavelength.

A TFB PF8Cz TFB@PF8Cz
340 nm 0.595 0.680 0.726
348 nm 0.619 0.666 0.723
390 nm 0.418 0.710 0.744
Table S2. Device performances of QLEDs with different HTLs.
Devices PR EL L Vi Peak CE Peak L Peak PE  Peak EQE
(nm) \4 (cd A (cdm?) (Im W) (%)
TFB 2.39 14.85 17253 8.93 8.96
Red 620 PF8Cz 2.89 11.27 12486 4.49 6.80
TFB@PF8Cz 2.14 21.31 25769 19.14 12.86
TFB 3.29 18.37 24694 7.05 4.69
Green 525 PF8Cz 3.96 16.37 13164 7.86 4.18
TFB@PF8Cz 3.00 23.17 26447 10.61 5.92
TFB 4.36 0.66 425 0.35 1.81
Blue 458 PF8Cz 5.33 0.38 366 0.18 1.04
TFB@PF8Cz 4.27 0.81 476 0.43 2.22

EQE is calculated as follows:!

1.18 * current efficiency * m * Emission wavelength

EQE =

Visual constant * 10000

1 S. R. Forrest, D. D. C. Bradley and M. E. Thompson, Adv. Mater., 2003, 15, 1043-1048.



