Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supplementary Material

Obtaining excellent optical molecules by screening superalkali-doped cyclo[2n]carbon, $M_3O@C_{2n}$ (M = Li, Na, and K, n = 5-10)

Wenwen Zhao,^a Jiaojiao Wang,^a Xiufen Yan,^a Tian Lu,^{*b} and Zeyu Liu^{*a}

 ^aSchool of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
 ^bBeijing Kein Research Center for Natural Sciences, Beijing 100022, People's Republic of China

Contents:

Table S2. Root-mean-square-deviations of cyclocarbon units (RMSD, in Å), molecular planarity parameters of cyclocarbon units (MPP, in Å), spans of deviation from plane of cyclocarbon units (SDP, in Å), average bond lengths of superalkali units (r_{M-O}^{ave} , in Å), distances between O atom and ring plane (d, in Å), and angles between the alkali-metal plane and the ring plane $(\theta,$ in°) in M₃O@C_{2n}......S14

Table S3. Vertical ionization potentials (E_{VIP} , in eV), NPA charges on the superalkalis (Q_M , in |e|), dipole moments (μ_0 , in D), frontier molecular orbital energies ($E_{\alpha HOMO}/E_{\beta HOMO}$ and $E_{\alpha LUMO}/E_{\beta LUMO}$, in eV), and $\alpha HOMO-\alpha LUMO/\beta HOMO-\beta LUMO$ gaps ($\Delta E_{\alpha gap}/\Delta E_{\beta gap}$, in eV) in M₃O@C_{2n}.....S15

Figure S1. Excess electron isosurfaces (isovalue = 0.001 a.u.) of M₃O (top panel) and M₃O@C₂₀ (bottom panel).....S16 **Table S4.** Interaction energies (ΔE_{int} , in kcal·mol⁻¹) and its components (ΔE_{els} , ΔE_{xrep} , ΔE_{orb} , and ΔE_{disp} , in kcal·mol⁻¹) between M₃O⁺ and C₂₀⁻ in M₃O@C₂₀ calculated by the sobEDAw

method......S17

Table S5. Isotropic polarizabilities (α_0 , in a.u.) and its Cartesian components (α_{xx} , α_{yy} ,
and α_{zz} , in a.u.) of the M ₃ O@C _{2n} S18
Table S6. First hyperpolarizabilities (β_0 , in a.u.) and its Cartesian components (β_x , β_y ,
and β_z , in a.u.) of the M ₃ O@C _{2n} S19
Table S7. First hyperpolarizabilities (β_0 , in a.u.) and its Cartesian components (β_x , β_y ,
and β_z , in a.u.) of the M ₃ O@C ₂₄
Table S8. Response properties (α_0 and β_0 , in a.u.) of M ₃ O@C ₂₀ calculated at different
theoretical levels
Table S9. Isotropic polarizabilities (α_0 , in a.u.) and first hyperpolarizabilities (β_0 , in
a.u.) of the Li ₃ O@C ₂₀ in zero-frequency limit ($\lambda = \infty$ nm) and under frequency-
dependent fields ($\lambda = 1907, 1460, 1340, 1180, \text{ and } 1064 \text{ nm}$)S22

$Li_3O@C_{10}$ (charge = 0, spin multiplicity = 2)			
Atom	x	у	Z
C	-1.99468917	0.47294619	0.20524408
С	-1.16433183	1.40965362	0.16373882
С	-0.03843763	2.11925883	0.16362562
С	1.10766573	1.53866446	0.12601042
С	2.13381982	0.73703077	0.17524987
С	1.87386714	-0.53990505	0.16362311
С	1.37782238	-1.72346341	0.23387214
С	0.06088297	-1.91503277	0.22464472
С	-1.17916455	-1.74035828	0.24558558
С	-2.18828742	-0.85403606	0.29112249
Ο	0.06956586	0.03183582	3.10122491
Li	0.29291644	1.60735319	2.54196904
Li	1.27623474	-1.02947158	2.58950891
Li	-1.42060694	-0.53501158	2.53188919

Table S1. Optimized Cartesian coordinates for studied $M_3O@C_{2n}$ at the $\omega B97XD/6-311+G(2d)$ level of theory

$Na_3O@C_{10}$ (charge = 0, spin multiplicity = 2)			
Atom	x	У	Z
C	-2.00278910	0.46848998	0.06171547
С	-1.16924619	1.40267777	0.03949550
С	-0.04510717	2.11582160	0.04266955
С	1.09800823	1.52887384	0.01958166
С	2.12686837	0.73014662	0.06909737
С	1.86052376	-0.54577723	0.05517757
С	1.36918936	-1.73201336	0.11017391
С	0.05143765	-1.91835579	0.09837800
С	-1.18916279	-1.74727636	0.10069078
С	-2.19642492	-0.85902351	0.13030041
Ο	0.08852269	0.04661250	3.44667237
Na	1.57760008	-1.23483966	2.84424657
Na	-1.73740527	-0.65521562	2.79725780
Na	0.36529733	1.97284020	2.78663394

$K_3O@C_{10}$ (charge = 0, spin multiplicity = 2)			
atom	x	У	
С	-2.07949349	0.20088877	-0.09227738
С	-1.36698255	1.23147449	-0.10054346
С	-0.34332570	2.07948157	-0.10010874
С	0.86867187	1.66033742	-0.10705368
С	2.00487132	1.01908868	-0.03683149
С	1.90717826	-0.28253800	-0.03595577
С	1.57440510	-1.52250110	-0.00389078
С	0.29188853	-1.87833146	-0.02301998
С	-0.96059734	-1.87717758	-0.02529180
С	-2.08291165	-1.14218484	-0.02382212
Ο	0.11260840	0.04983317	3.54029921
Κ	0.71279529	2.21339027	2.96429852
Κ	-2.08052975	-0.51586565	2.99961268
Κ	1.66245961	-1.60782795	3.05833512

$Li_3O@C_{12}$ (charge = 0, spin multiplicity = 2)			
atom	x	У	Z
С	0.01958216	2.50050635	0.24442812
С	1.15683874	1.93887676	0.22954988
С	2.22749150	1.16413392	0.22857616
С	2.34364652	-0.09152903	0.14701535
С	2.23226348	-1.41456406	0.14607183
С	1.17723565	-2.11834568	0.12140983
С	-0.02874660	-2.65882306	0.12143390
С	-1.17535386	-2.12888398	0.08468080
С	-2.26480124	-1.37190810	0.13703140
С	-2.34748030	-0.10650934	0.16660017
С	-2.21268368	1.20713571	0.21853216
С	-1.18149306	1.93708600	0.19202666
0	-0.01133274	-0.16429804	2.81119355
Li	-0.16808105	1.46792820	2.40918470
Li	-1.33607839	-1.09885046	2.34079876
Li	1.47269232	-0.82522652	2.35165941

 $Na_3O@C_{12}$ (charge = 0, spin multiplicity = 2)

atom	<i>x</i>	уу	Z
С	0.01700555	2.50958257	0.10664701
С	1.15219023	1.94243867	0.09969744
С	2.22481271	1.17068171	0.09072375
С	2.33574619	-0.08651450	0.02058192
С	2.23605235	-1.41014219	0.00168826
С	1.17783141	-2.11025784	-0.01032434
С	-0.02659700	-2.65413989	-0.01520651
С	-1.17182481	-2.11955837	-0.03761608
С	-2.26810532	-1.37180110	-0.00124712
С	-2.34507236	-0.10592964	0.04089552
С	-2.21349728	1.20818142	0.08780256
С	-1.17896683	1.93429547	0.07248416
0	-0.00936515	-0.17778281	3.25896938
Na	1.78129577	-1.00204040	2.68005834
Na	-1.63052334	-1.29314890	2.66781623
Na	-0.17728923	1.80656435	2.75291987

$K_3O@C_{12}$ (charge = 0, spin multiplicity = 2)			
atom	x	У	Ζ
С	0.12045190	2.25003757	0.48962237
С	1.23854945	1.65652564	0.41998126
С	2.29271501	0.86718295	0.29440475
С	2.35185310	-0.37749910	0.07375612
С	2.20740761	-1.68455850	-0.09500232
С	1.13162612	-2.35307321	-0.14816840
С	-0.08746363	-2.86386239	-0.20441485
С	-1.21178467	-2.28543625	-0.15153302
С	-2.28062305	-1.51318905	-0.01368984
С	-2.32157794	-0.26290779	0.19218386
С	-2.15676392	1.03691470	0.37485074
С	-1.09308419	1.72139594	0.41554731
0	0.06125844	-0.80800939	3.58452701
Κ	-0.43434543	1.45604183	3.44337708
Κ	-1.62447385	-2.26483316	2.93073212
Κ	2.22406404	-1.42013250	3.00220910

$Li_3O@C_{14}$ (charge = 0, spin multiplicity = 2)			
atom	x	У	Z
С	0.05875749	2.89022401	0.05252687
С	1.24337044	2.47549296	0.11509787
С	2.23623955	1.61965263	0.17459679
С	2.65919854	0.43871121	0.20822880
С	2.84482349	-0.86061508	0.30338299
С	2.06897556	-1.87572089	0.32425902
С	1.18718155	-2.82078361	0.38603835
С	-0.10545304	-2.80253759	0.31258099
С	-1.37375602	-2.65774491	0.28087465
С	-2.18319210	-1.62401951	0.18315304
С	-2.73840339	-0.49979973	0.14982714
С	-2.66885253	0.80978543	0.09711583
С	-2.14425564	1.95013713	0.04317445
С	-1.25250877	2.91195018	0.04418648
0	0.00379505	-0.06024498	2.59328672
Li	-0.58075456	1.34077468	1.84899927
Li	-1.00587528	-1.38358835	2.36000613
Li	1.65894338	-0.25986253	2.37774523

$Na_3O@C_{14}$ (charge = 0, spin multiplicity = 2)			
atom	x	У	Z
C	0.00476317	3.02424978	-0.17622310
С	1.19078517	2.61508430	-0.07776224
С	2.15545083	1.73269462	0.04593667
С	2.57077049	0.55279790	0.14031458
С	2.78275534	-0.74317772	0.24719651
С	2.01326635	-1.76371805	0.25782256
С	1.14811011	-2.72494455	0.32103982
С	-0.14579967	-2.68099622	0.24716724
С	-1.41188367	-2.52433455	0.22554144
С	-2.20392564	-1.47572340	0.11718474
С	-2.76408702	-0.35874084	0.02267033
С	-2.73044942	0.94992376	-0.09550036
С	-2.20166723	2.08661752	-0.18755012
С	-1.30219659	3.03733518	-0.21026475

0	0.16536359	-0.45669071	3.08587805
Na	2.20182303	-0.62589391	3.02416827
Na	-1.12016490	-2.04321348	3.01078754
Na	-0.43968741	0.98325444	1.72900470

$K_3O@C_{14}$ (charge = 0, spin multiplicity = 2)			
atom	x	У	Ζ
С	0.04604281	3.06588914	-0.34811009
С	1.22129966	2.64142090	-0.20290072
С	2.15602092	1.73269616	-0.03111845
С	2.53079214	0.54348131	0.10166980
С	2.69226436	-0.75791016	0.23720802
С	1.89237335	-1.75282367	0.24778640
С	0.99573418	-2.68783099	0.30304975
С	-0.29491572	-2.58282081	0.18250473
С	-1.54731793	-2.36577649	0.12445670
С	-2.33498315	-1.32076982	-0.03185874
С	-2.86115776	-0.19328171	-0.18192749
С	-2.80692200	1.11104559	-0.33366260
С	-2.19908154	2.21105158	-0.42379298
С	-1.25653232	3.11102698	-0.43450985
0	0.33540063	-0.79630869	3.37148066
Κ	-0.49177518	0.85994597	1.91111502
Κ	-0.99210819	-2.67818505	3.35215533
K	2.63773360	-0.79961822	3.42333226

$Li_3O@C_{16}$ (charge = 0, spin multiplicity = 2)			
atom	x	У	Z
C	0.61449358	3.23727814	0.13636764
С	-0.61826173	3.22399394	0.14985538
С	-1.85337627	2.69318591	0.17753475
С	-2.70888097	1.81145628	0.21130797
С	-3.21721395	0.56852487	0.24361612
С	-3.25292276	-0.66226764	0.24299639
С	-2.73385215	-1.90583811	0.26870111
С	-1.83744451	-2.74905233	0.31200279
С	-0.59386547	-3.25788682	0.32087229

С	0.63462780	-3.26697320	0.31186346
С	1.87917428	-2.75883868	0.28769637
С	2.76404730	-1.90184646	0.24995281
С	3.25998675	-0.64964622	0.23621767
С	3.21676751	0.58022364	0.23694035
С	2.69875331	1.81842070	0.20937152
С	1.85289566	2.71062849	0.16521290
0	0.02043541	0.03155507	2.20199931
Li	0.18131119	1.67364916	1.86252848
Li	-1.48159182	-0.66272270	1.88387334
Li	1.38075152	-0.91245796	1.89075197

]	$Na_3O@C_{16}$ (charge = 0, spin multiplicity = 2)		
atom	x	У	Z
С	0.61739963	3.18020333	-0.02108004
С	-0.61591152	3.25509008	-0.01013969
С	-1.82032036	2.66273975	0.01811987
С	-2.72358982	1.82582010	0.07597598
С	-3.17995123	0.56657621	0.09080902
С	-3.27993855	-0.66372361	0.09595591
С	-2.70731825	-1.87818631	0.09233230
С	-1.87317867	-2.78718415	0.14297103
С	-0.60549384	-3.22507552	0.15732178
С	0.62514935	-3.28936852	0.16895115
С	1.84003987	-2.72537181	0.13001873
С	2.77667146	-1.92117232	0.08874311
С	3.21788756	-0.65287346	0.05166515
С	3.25989434	0.57994223	0.06732871
С	2.68513272	1.79013483	0.04180938
С	1.87675347	2.72091699	0.01478864
0	0.02352626	0.04706959	2.92907177
Na	1.79415896	-0.87630068	2.46148106
Na	-1.65547941	-1.03576155	2.46612792
Na	-0.07502362	2.03069689	2.41955273

$K_3O@C_{16}$ (charge = 0, spin multiplicity = 2)				
atom	x	У	Z	

С	0.69918055	3.02661576	0.31931205
С	-0.53072437	3.04640433	0.33603799
С	-1.78521995	2.56344621	0.31932595
С	-2.68359013	1.72422614	0.27406847
С	-3.23206247	0.49737555	0.20967403
С	-3.27975565	-0.73123737	0.12542928
С	-2.79585348	-1.98680866	0.05926196
С	-1.93446290	-2.86777814	0.03246930
С	-0.70356385	-3.41007401	0.00320139
С	0.52642525	-3.43094200	0.00269505
С	1.78087854	-2.94787917	0.01888146
С	2.67939418	-2.10809191	0.04669413
С	3.22768241	-0.88056543	0.09904134
С	3.27500162	0.35030748	0.13828540
С	2.79077906	1.60572852	0.20525082
С	1.92983006	2.48449230	0.27809163
0	0.01285887	-0.30358443	2.33721194
Κ	-0.00264707	-0.18268072	-0.01141211
Κ	-1.98913592	-1.10453672	3.09442433
Κ	2.02556675	0.41722936	3.14494113

L	i ₃ O@C ₁₈ (charge	= 0, spin multipl	icity = 2)
atom	x	У	Z
C	0.60176800	-3.68923034	0.13430803
С	-0.62992880	-3.84605227	0.21968158
С	-1.83214907	-3.27392270	0.31601379
С	-2.84423317	-2.56974677	0.36864050
С	-3.43788443	-1.35876342	0.41138118
С	-3.61953502	-0.14779537	0.44393313
С	-3.37066494	1.17704536	0.42650192
С	-2.75055205	2.22865963	0.37593895
С	-1.76891627	3.14694733	0.29146283
С	-0.61337941	3.55237672	0.18462623
С	0.72061548	3.66853252	0.08432527
С	1.81572525	3.08078830	0.03148769
С	2.88858309	2.31338793	-0.05855037
С	3.36316146	1.15111415	-0.08432344

С	3.65554380	-0.11840367	-0.13284067
С	3.44474912	-1.36658931	-0.14023137
С	2.76433956	-2.47588253	-0.07899707
С	1.87097651	-3.35976436	0.00801949
Ο	0.10647567	-0.06977107	1.51186705
Li	1.57279843	-0.81291362	1.14550244
Li	-1.29491234	-0.99090317	1.40964944
Li	0.04841889	1.59924442	1.32125522

N	$Na_3O@C_{18}$ (charge = 0, spin multiplicity = 2)		licity = 2)
atom	x	У	Z
С	0.60291993	-3.67792284	-0.03165314
С	-0.62342965	-3.83513472	0.06596856
С	-1.80689304	-3.21173774	0.12931139
С	-2.79261442	-2.47708264	0.19609162
С	-3.34048953	-1.24557414	0.24618956
С	-3.53580229	-0.03857992	0.30414705
С	-3.30799635	1.28884200	0.29952390
С	-2.73624528	2.37054388	0.24650387
С	-1.81334781	3.34424963	0.15924450
С	-0.65147889	3.74416958	0.04328749
С	0.67172464	3.88384588	-0.06155788
С	1.74531224	3.23833992	-0.14633503
С	2.71371331	2.36494352	-0.21039527
С	3.23680612	1.21511410	-0.24764731
С	3.44427797	-0.06207913	-0.27734256
С	3.40410979	-1.33036192	-0.29113521
С	2.68129328	-2.41929542	-0.24323473
С	1.89671151	-3.39642785	-0.13151648
Ο	0.23325466	-0.42935419	2.26715270
Na	2.10307895	-1.25233257	2.24574413
Na	-1.51421494	-1.45283346	2.50379520
Na	0.08001133	1.21746784	1.03697027

K	$K_3O@C_{18}$ (charge = 0, spin multiplicity = 2)			
atom	x	У	Z	
С	1.87241850	-3.11844435	0.00051734	

С	0.64774657	-3.42160453	-0.00356869
С	-0.64784364	-3.42166204	0.00499304
С	-1.87239242	-3.11864754	0.02526909
С	-2.86198024	-2.26598618	0.02588179
С	-3.70629099	-1.33496574	0.04840758
С	-3.76164608	-0.00097860	0.01859342
С	-3.63297855	1.22779768	0.03307999
С	-2.82842619	2.30521802	0.00603170
С	-1.89488721	3.09739240	-0.00054697
С	-0.61079311	3.50566910	-0.01995162
С	0.61063497	3.50568260	-0.02811993
С	1.89488659	3.09744558	-0.02588134
С	2.82840263	2.30523593	-0.03175625
С	3.63332214	1.22787502	-0.01537915
С	3.76173930	-0.00091030	-0.03150092
С	3.70658016	-1.33487944	-0.00085842
С	2.86195444	-2.26582283	-0.01209365
0	0.01302976	-0.12041910	1.97571298
Κ	2.15532689	-0.31066542	2.78706672
Κ	-2.11806640	-0.31112853	2.81579249
K	-0.00262981	0.08606665	-0.34682696

Li	$Li_3O@C_{20}$ (charge = 0, spin multiplicity = 2)		
atom	x	У	Z
С	0.62025723	3.98118557	0.36778921
С	-0.60443741	4.03555286	0.36006546
С	-1.86869668	3.55134009	0.35362910
С	-2.83785245	2.81160751	0.34989562
С	-3.61492252	1.70386089	0.34838370
С	-3.99200025	0.54691366	0.34951977
С	-4.01246319	-0.80662734	0.35379878
С	-3.64697965	-1.97153229	0.35943891
С	-2.89571269	-3.09686819	0.36814183
С	-1.84794645	-3.73617173	0.37705548
С	-0.59309646	-4.21070730	0.38676836
С	0.63406547	-4.09648331	0.39420466
С	1.91560253	-3.74083230	0.40113172

С	2.89224992	-2.97617904	0.40469956
С	3.69423277	-1.92208720	0.40636364
С	4.06581711	-0.73306232	0.40477615
С	4.00746574	0.59035126	0.40016780
С	3.68641950	1.78612369	0.39435592
С	2.84417688	2.81852841	0.38563839
С	1.91856440	3.63060237	0.37716528
0	0.02378150	-0.09996095	0.37698589
Li	-0.12298551	1.58581366	0.37055461
Li	-1.31535150	-1.13387550	0.37199755
Li	1.57773682	-0.78627987	0.38918993

N	a ₃ O@C ₂₀ (charge	= 0, spin multipl	icity = 2)
atom	x	У	Z
С	0.60386058	4.02098149	0.04403545
С	-0.62678211	3.99970835	0.05180697
С	-1.88729167	3.54305353	0.07829816
С	-2.84759467	2.77688684	0.10244765
С	-3.62286919	1.68537738	0.10622779
С	-4.02775674	0.52581805	0.08642708
С	-4.05144762	-0.81436778	0.06262134
С	-3.68443053	-1.98894473	0.04677926
С	-2.87118438	-3.05643994	0.06126968
С	-1.84132485	-3.72760529	0.09294609
С	-0.55913300	-4.11373041	0.10348640
С	0.66889589	-4.11330807	0.09735348
С	1.94818245	-3.71645816	0.07706493
С	2.96426621	-3.02365616	0.04559322
С	3.74728734	-1.93339672	0.04268487
С	4.07874547	-0.74874136	0.06642002
С	4.03530023	0.59035576	0.08893553
С	3.62714575	1.74849300	0.10041312
С	2.84320359	2.83406835	0.09085793
С	1.87432808	3.59019751	0.06315836
0	0.02162695	-0.10508590	2.10818208
Na	1.70986886	-1.22020041	1.78982659
Na	-1.78709588	-1.01427165	1.79706928

Na 0.1	4215183	1.91200673	1.77333646

K	$K_3O@C_{20}$ (charge = 0, spin multiplicity = 2)					
atom	x	У	Z			
С	0.59480940	4.00296693	0.22727765			
С	-0.63344509	3.95615230	0.23594317			
С	-1.88961408	3.49095786	0.25442622			
С	-2.85582324	2.73138376	0.27015658			
С	-3.63026015	1.63858582	0.29498824			
С	-4.01237274	0.46946253	0.30921038			
С	-4.01883450	-0.87035847	0.35464787			
С	-3.60663841	-2.02733298	0.42045470			
С	-2.80366632	-3.09726818	0.48260150			
С	-1.78818261	-3.78649976	0.51903072			
С	-0.50884730	-4.17814723	0.51854244			
С	0.71836146	-4.17542256	0.48125267			
С	1.98264550	-3.73860417	0.41749468			
С	2.97267846	-3.01209446	0.34883054			
С	3.71749619	-1.89842342	0.30108963			
С	4.05525942	-0.71572667	0.28633450			
С	4.02337819	0.62333022	0.26236148			
С	3.64721848	1.79339050	0.24823050			
С	2.86641532	2.88186255	0.23209862			
С	1.87599117	3.60976542	0.22546835			
0	-0.02299803	-0.31577018	2.10421636			
Κ	0.28252167	0.72768675	0.04216345			
Κ	-2.19139649	-0.28060438	2.88600009			
Κ	1.81610592	-1.47002054	2.87869106			

Table S2. Root-mean-square-deviations of cyclocarbon units (RMSD, in Å), molecular planarity parameters of cyclocarbon units (MPP, in Å), spans of deviation from plane of cyclocarbon units (SDP, in Å), average bond lengths of superalkali units (r_{M-O}^{ave} , in Å), distances between O atom and ring plane (d, in Å), and angles between the alkali-metal plane and the ring plane (θ , in°) in M₃O@C_{2n}

	RMSD	MPP	SDP	$\mathcal{V}_{\text{M-O}}^{\text{ave}}$	d	θ
Li ₃ O@C ₁₀	0.150	0.021	0.057	1.69	2.904	2.1
$Na_3O@C_{10}$	0.149	0.017	0.047	2.06	3.377	1.1
$K_3O@C_{10}$	0.152	0.014	0.046	2.32	3.599	0.1
Li ₃ O@C ₁₂	0.030	0.018	0.049	1.69	2.642	0.1
$Na_3O@C_{12}$	0.030	0.013	0.036	2.05	3.222	0.0
$K_3O@C_{12}$	0.032	0.018	0.043	2.32	3.482	0.0
Li ₃ O@C ₁₄	0.142	0.016	0.065	1.68	2.403	9.5
$Na_3O@C_{14}$	0.157	0.017	0.050	2.05	3.087	22.3
$K_3O@C_{14}$	0.149	0.018	0.054	2.32	3.599	20.0
Li ₃ O@C ₁₆	0.027	0.014	0.045	1.68	1.968	0.8
$Na_3O@C_{16}$	0.045	0.019	0.066	2.05	2.855	0.5
$K_3O@C_{16}$	0.022	0.014	0.038	2.31	2.186	90.0
Li ₃ O@C ₁₈	0.074	0.015	0.051	1.68	1.360	1.2
$Na_3O@C_{18}$	0.152	0.018	0.057	2.05	2.315	27.8
$K_3O@C_{18}$	0.146	0.010	0.032	2.31	1.980	82.6
Li ₃ O@C ₂₀	0.046	0.000	0.001	1.69	0.000	0.0
Na ₃ O@C ₂₀	0.046	0.021	0.061	2.05	2.033	0.4
K ₃ O@C ₂₀	0.046	0.031	0.103	2.31	1.782	57.7

Table S3. Vertical ionization potentials (E_{VIP} , in eV), NPA charges on the superalkalis (Q_M , in |e|), dipole moments (μ_0 , in D), frontier molecular orbital energies ($E_{\alpha HOMO}/E_{\beta HOMO}$ and $E_{\alpha LUMO}/E_{\beta LUMO}$, in eV), and $\alpha HOMO-\alpha LUMO/\beta HOMO-\beta LUMO$ gaps ($\Delta E_{\alpha gap}/\Delta E_{\beta gap}$, in eV) in M₃O@C_{2n}

	$E_{\rm VIP}$	Qм	μ_0	$E_{\alpha \mathrm{HOMO}}/E_{\beta \mathrm{HOMO}}$	$E_{\alpha \text{LUMO}}/E_{\beta \text{LUMO}}$	$\Delta E_{lpha { m gap}}/\Delta E_{eta { m gap}}$
Li ₃ O@C ₁₀	7.21	0.977	3.44	-7.17/-8.07	-0.80/-1.07	6.37/7.00
$Na_3O@C_{10}$	6.80	0.985	5.01	-6.45/-6.45	-0.35/-0.73	6.10/5.72
K ₃ O@C ₁₀	6.35	0.995	7.97	-5.90/-5.90	0.04/-0.27	5.93/5.62
$Li_3O@C_{12}$	6.96	0.983	3.28	-6.88/-7.49	-1.22/-2.17	5.66/5.32
$Na_3O@C_{12}$	6.49	0.991	5.06	-6.43/-6.48	-0.84/-1.77	5.59/4.71
K ₃ O@C ₁₂	5.98	1.000	8.03	-5.89/-5.91	-0.46/-1.35	5.44/4.56
Li ₃ O@C ₁₄	6.86	0.978	2.77	-6.79/-8.13	-1.87/-1.87	4.92/6.25
$Na_3O@C_{14}$	6.56	0.984	5.70	-6.48/-6.49	-1.49/-1.58	5.00/4.90
K ₃ O@C ₁₄	6.19	0.991	8.58	-5.93/-5.94	-1.15/-1.30	4.78/4.64
Li ₃ O@C ₁₆	6.37	0.962	2.22	-6.32/-7.72	-2.26/-2.26	4.06/5.46
$Na_3O@C_{16}$	6.12	0.985	4.23	-6.09/-6.53	-1.96/-2.02	4.13/4.51
K ₃ O@C ₁₆	5.66	0.974	5.83	-5.65/-5.67	-1.71/-1.64	3.94/4.03
Li ₃ O@C ₁₈	6.45	0.966	1.95	-6.54/-8.08	-2.17/-2.17	4.37/5.91
Na ₃ O@C ₁₈	6.26	0.986	4.43	-6.34/-6.58	-1.94/-1.93	4.40/4.65
K ₃ O@C ₁₈	5.92	0.984	5.41	-5.92/-5.92	-1.60/-1.66	4.32/4.26
$Li_3O@C_{20}$	6.28	0.969	1.56	-6.38/-7.83	-2.63/-2.56	3.75/5.27
Na ₃ O@C ₂₀	5.96	0.981	3.09	-5.96/-6.60	-2.39/-2.34	3.57/4.26
K ₃ O@C ₂₀	5.56	0.985	5.12	-5.57/-5.97	-2.04/-1.98	3.53/3.98

Figure S1. Excess electron isosurfaces (isovalue = 0.001 a.u.) of M₃O (top panel) and M₃O@C₂₀ (bottom panel).

Table S4. Interaction energies (ΔE_{int} , in kcal·mol⁻¹) and its components (ΔE_{els} , ΔE_{xrep} , ΔE_{orb} , and ΔE_{disp} , in kcal·mol⁻¹) between M₃O⁺ and C₂₀⁻ in M₃O@C₂₀ calculated by the sobEDAw method

	$\Delta E_{\rm int}$	$\Delta E_{\rm els}$	$\Delta E_{\rm xrep}$	$\Delta E_{\rm orb}$	$\Delta E_{\rm disp}$
Li ₃ O@C ₁₀	-115.4	-106.3	27.5	-20.7	-16.0
$Na_3O@C_{10}$	-102.2	-99.4	25.1	-11.8	-16.2
K ₃ O@C ₁₀	-89.3	-87.5	22.7	-8.3	-16.3
$Li_3O@C_{12}$	-116.5	-102.7	26.4	-22.8	-17.4
$Na_3O@C_{12}$	-102.7	-96.3	23.4	-12.5	-17.3
K ₃ O@C ₁₂	-90.2	-85.7	22.5	-9.1	-17.9
Li ₃ O@C ₁₄	-111.3	-92.5	22.5	-23.5	-17.9
$Na_3O@C_{14}$	-98.7	-89.4	23.4	-13.3	-19.5
K ₃ O@C ₁₄	-88.7	-81.9	23.5	-9.7	-20.6
Li ₃ O@C ₁₆	-116.5	-92.4	20.7	-26.5	-18.4
Na ₃ O@C ₁₆	-101.5	-87.8	18.9	-14.2	-18.3
K ₃ O@C ₁₆	-92.5	-81.3	26.9	-10.9	-27.2
Li ₃ O@C ₁₈	-111.8	-84.4	19.4	-28.1	-18.8
$Na_3O@C_{18}$	-95.7	-79.7	18.0	-14.0	-20.0
K ₃ O@C ₁₈	-88.5	-72.3	16.9	-8.4	-24.8
Li ₃ O@C ₂₀	-109.5	-79.9	14.0	-26.0	-17.6
Na ₃ O@C ₂₀	-99.2	-80.6	16.5	-16.0	-19.2
K ₃ O@C ₂₀	-87.2	-72.1	16.6	-8.9	-22.7

Table S5. Isotropic polarizabilities (α_0 , in a.u.) and its Cartesian components (α_{xx}, α_{yy} , and α_{zz} , in a.u.) of the M₃O@C_{2n}

	α_0	α_{xx}	α_{yy}	α_{zz}
Li ₃ O@C ₁₀	149	182	169	97
$Na_3O@C_{10}$	171	203	191	118
K ₃ O@C ₁₀	187	218	208	134
Li ₃ O@C ₁₂	181	218	218	107
$Na_3O@C_{12}$	202	238	238	129
$K_3O@C_{12}$	219	253	251	152
Li ₃ O@C ₁₄	234	281	305	115
$Na_3O@C_{14}$	253	298	323	139
$K_3O@C_{14}$	271	317	337	159
Li ₃ O@C ₁₆	279	357	358	121
$Na_3O@C_{16}$	298	374	374	146
$K_3O@C_{16}$	309	390	372	163
Li ₃ O@C ₁₈	345	424	484	128
$Na_3O@C_{18}$	361	422	507	153
$K_3O@C_{18}$	374	534	421	167
Li ₃ O@C ₂₀	417	537	577	136
Na ₃ O@C ₂₀	455	602	603	159
K ₃ O@C ₂₀	464	613	602	178

Table S6. First hyperpolarizabilities (β_0 , in a.u.) and its Cartesian components (β_x , β_y , and β_z , in a.u.) of the M₃O@C_{2n}

	eta_0	β_x	β_y	β_z
Li ₃ O@C ₁₀	647	329	99	-549
Na ₃ O@C ₁₀	1283	262	65	-1254
K ₃ O@C ₁₀	1911	201	104	1898
$Li_3O@C_{12}$	425	-11	14	-425
$Na_3O@C_{12}$	1054	-5	12	-1054
K ₃ O@C ₁₂	293	6	41	290
Li ₃ O@C ₁₄	1215	470	-1083	-288
$Na_3O@C_{14}$	1325	156	-343	-1270
K ₃ O@C ₁₄	1451	67	-287	1421
$Li_3O@C_{16}$	116	61	68	-71
$Na_3O@C_{16}$	1070	-12	-10	-1070
K ₃ O@C ₁₆	1784	-8	94	1782
Li ₃ O@C ₁₈	1897	1840	-310	-345
Na ₃ O@C ₁₈	3385	1536	-2819	-1073
K ₃ O@C ₁₈	1530	-4	-710	-1355
Li ₃ O@C ₂₀	10542	9811	-3856	75
Na ₃ O@C ₂₀	202	20	-87	181
K ₃ O@C ₂₀	1211	108	485	-1105

Table S7. First hyperpolarizabilities (β_0 , in a.u.) and its Cartesian components (β_x , β_y , and β_z , in a.u.) of the M₃O@C₂₄

	eta_0	β_x	β_y	β_z
$Li_3O@C_{24}$	19093	1731	19014	7
$Na_3O@C_{24}$	28414	-15195	24009	-236
K ₃ O@C ₂₄	27217	-17659	20706	-424

		α_0		β_0
	CAM-	BHandHLY	CAM-	BHandHLY
	B3LYP	Р	B3LYP	Р
Li ₃ O@C ₂₀	417	409	10357	10850
Na ₃ O@C ₂₀	443	448	285	513
K ₃ O@C ₂₀	455	459	998	862

Table S8. Response properties (α_0 and β_0 , in a.u.) of M₃O@C₂₀ calculated at different theoretical levels

Table S9. Isotropic polarizabilities (α_0 , in a.u.) and first hyperpolarizabilities (β_0 , in a.u.) of the Li₃O@C₂₀ in zero-frequency limit ($\lambda = \infty$ nm) and under frequencydependent fields ($\lambda = 1907$, 1460, 1340, 1180, and 1064 nm)

λ	α_0	eta_0
∞ nm	417	10542
1907 nm	419	28449
1460 nm	419	305597
1340 nm	427	34582
1180 nm	438	48098
1064 nm	450	55937