Greatly Improved the Efficiency and Stability of Planar Perovskite Solar Cells by BDADI Interfacial Modification

Huichao Fan¹, Haijun Su^{1*}, Yu Pu¹, Congcong Liu¹, Jiarong Wu², Sitian Li¹, Hao

Jiang¹, Minghui Yu¹, Min Guo¹

¹State Key Laboratory of Solidification Processing, Northwestern Polytechnical

University, Xi'an 710072, P.R. China

^{2.} School of Materials Science and Engineering, Shaanxi Normal University, Xi'an,

710119, China

Corresponding Author

* E-mail: <u>shjnpu@nwpu.edu.cn.</u> Tel.: +86-29-88491478; Fax: +86-29-88494080.

SnO ₂	position(eV)	530.60		531.75
	area ratio	77.53%		22.47%
SnO ₂ -BDADI	position(eV)	530.60	531.80	532.90
	area ratio	75.66%	15.00%	9.34%

Table S1 Peak value of O 1s XPS in SnO_2 and SnO_2 -BDADI films.

SnO ₂	position(eV)	486.83	495.02	
	area ratio	59.61%	40.39%	
SnO ₂ -BDADI	position(eV)	486.95	495.14	
	area ratio	58.95%	41.05%	

Table S2 Peak value of Sn $3d_{5/2}$ XPS in SnO_2 and $SnO_2\mbox{-}BDADI$ films.

Sample	$\tau_{ave}(ns)$	$\tau_1(ns)$	A ₁ (%)	$\tau_2(ns)$	A ₂ (%)
Glass/Perovskite	460.95	512.54	89.12	38.46	10.88
Glass/SnO ₂ /Perovskite	91.20	118.82	79.73	56.10	31.21
Glass/SnO ₂ -BDADI/Perovskite	88.92	100.13	42.23	67.06	57.77

Table S3 The biexponential fitted parameters of the TRPL spectra of perovskite filmsdeposited on $SnO_2 SnO_2$ -BDADI films and their corresponding proportions.

$$y(t) = y_0 + A_1 exp(-\frac{t}{\tau_1}) + A_2 exp(-\frac{t}{\tau_2})$$

$$\tau_{ave} = (A_1 \tau_1^2 + A_2 \tau_2^2) / (A_1 \tau_1 + A_2 \tau_2)$$

where A_i is relative decay amplitudes and τ_i is PL decay lifetimes that relate with different influence factors.

Device	Rs(Ω)	$Rct(\Omega)$	$\operatorname{Rrec}(\Omega)$
SnO ₂	15.82	6379	4191
SnO ₂ -BDADI	11.1	1974	6981

Table S4 Parameters employed for the fitting of the impedance spectra of devices based

on SnO_2 and SnO_2 -BDADI ETLs.

PSCs	Scan direction	$V_{\rm oc}({ m V})$	$J_{\rm sc}$ (mA cm ⁻²)	FF (%)	PCE (%)
SnO ₂	reverse	1.07	24.22	78.15	20.25
	forward	1.05	23.78	76.56	18.09
SnO ₂ -BDADI	reverse	1.12	24.95	79.37	22.17
	forward	1.11	24.52	78.22	21.28

Table S5 The photovoltaic parameters of best-performing PSCs based SnO_2 and SnO_2 -

BDADI.

Fig. S1. The chemical structure of BDADI.

The specific dissolution equations for the generation of 1, 4-butanediamine cation $(C_4H_{12}N_2^{2+})$ and iodide anion (I⁻) are as follows:

 $C_4H_{14}N_2I_2(\text{Solid})\underline{DMSO}C_4H_{12}N_2^{2+}(DMSO)_{+2}I^{-}(DMSO)$

Fig. S2. The SEM images of SnO2 film and SnO2-BDADI film.

Fig. S3. Distribution of perovskite films deposited on (c) SnO_2 and (d) SnO_2 -BDADI film.

Fig. S4. Cross-sectional SEM image of the device with a structure of FTO/SnO_2 -

BDADI/perovskite/Spiro-OMeTAD/Ag.

Fig. S5. Statistical photovoltaic parameters of PCE (a), Jsc (b), FF (c) and for PSCs based on SnO_2 and SnO_2 -BDADI ETLs.

Reference

- C. Liu, M. Guo, H. Su, P. Zhai, K. Xie, Z. Liu, J. Zhang, L. Liu, H. Fu, Appl. Surf. Sci., 2022, 588, 152943.
- (2) K. Li, S. Yue, X. Li, N. Ahmad, Q. Cheng, B. Wang, X. Zhang, S. Li, Y. Li, G. Huang, H. Kang, T. Yue, S. U. Zafar, H. Zhou, L. Zhu, Y. Zhang, Adv. Funct. Mater., 2022, 32, 2200024.
- (3) M. Li, Y. Peng, W. Pan, Z. Wang, J. Zong, Z. Zhu, L. Zhao, H. Gao, R. Chen, ACS Appl. Energy Mater., 2023, 6, 4150–4156.
- (4) Z. Xiong, X. Chen, B. Zhang, G. O. Odunmbaku, Z. Ou, B. Guo, K. Yang, Z. Kan,
 S. Lu, S. Chen, N. A. N. Ouedraogo, Y. Cho, C. Yang, J. Chen, K. Sun, Adv.
 Mater., 2022, 34, 2106118.