Supporting Information

Laser-induced graphene based on a controllable angle between two irradiation steps for the flexible sensor

Xiaofei Mao^a, Yixiao Wang^{b, c, d}, Hao Li^a, Peilong Zhao^a, Nan Zhao^{a, e, g, *}, Bo Xie

f, g, Yuguang Zhou^{b, c, d}

- ^a School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China;
- ^b Bioenergy and Environment Science & Technology Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China;
- ^c Key Laboratory of Clean Production and Utilization of Renewable Energy, Ministry of Agriculture and Rurual Affairs, China, Beijing 100083, China;
- ^d National Center for International Research of BioEnergy Science and Technology, Ministry of Science and Technology, Beijing 100083, China;
- ^e State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P.R. Chinas;
- ^f Wengfu (Group) Co., Ltd, Guiyang 550001, China;
- ^g State Key Laboratory of Efficient Utilization of Medium and Low-Grade Phosphate Rock and Its Associated Resources, Guiyang 550014, China;
- * Corresponding authors: Nan Zhao, PhD, Professor, Tel: +86 13838315063, E-mail address: <u>nan.zhaoca@outlook.com/zhaonan@zzu.edu.cn</u>.

Fig. S1 Aging changes of LIG films at room temperature. The left picture is LIG film. The right picture shows the LIG film being retained at room temperature for 240 days.

Fig. S2 The persistent photoconductive effects test of LIG. The resistance of LIG after light exposure for 0 (a), 5 (b), 10 (c) and 15 (d) minutes.

Fig. S3 Cyclic voltammetry (CV) measurements conducted at different scan rates (10, 20, 50, 100, 150, 200, 250, 300 mV·s⁻¹) of the LIG with 0° twisted angle (a). Peak current plotted as a function of the square root of the scan rate with fitted linear regression curves in 5 mM K₃[Fe (CN)₆] and 0.30 M KCl. Blue and red dots indicate anodic and cathodic peak currents, respectively (b).

Fig. S4 The data of LIG with twisted angles of 0° (a) and 4° (b) for calculating the rate of heterogeneous electron transfer (HET). The linear fitting curve for calculating the HET rate (c).

Electrode material	Detection method	Analyte	Sensitivity of UA (µA µM ⁻¹ cm ⁻²)	LOD of UA (µM)	HET rate (k ⁰)	Ref
LIG with 4° twisted	DPV	UA	1.68 ± 0.021	$8.62 \pm$	$3.72\times10^{\text{-5}}\pm$	This
angle				0.15	$1.03 imes 10^{-5}$	work
LIG with 0° twisted	DPV	UA	0.95 ± 0.018	$15.6 \pm$	$2.60\times10^{\text{-5}}\pm$	This
angle				0.23	$0.84 imes 10^{-5}$	work
FMWCNT	CV/DPV	UA	0.4114	19	/	1
Uricase/Au– rGO/ITO	DPV	UA	/	7.32	/	2
ZnO@CNTs/CC	DPV	UA	0.11	0.88	/	3

Table S1 Performance comparison between the electrochemical sensor from this workand the other carbon nanomaterial-based sensors reported in the literature.

References

- G. Deffo, R. Hazarika, M. C. Deussi Ngaha, M. Basumatary, S. Kalita, N. Hussain, E. Njanja, P. Puzari and E. Ngameni, *Analytical Methods*, 2023, 15, 2456-2466.
- 2. W. Shi, J. Li, J. Wu, Q. Wei, C. Chen, N. Bao, C. Yu and H. Gu, *Analytical and Bioanalytical Chemistry*, 2020, **412**, 7275-7283.
- 3. F. Wang, F. Shi, J. Li, N. Chen, C. Chen, Z. Xu and J. Wang, *Microchemical Journal*, 2023, **193**, 109054.