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Material synthesis
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Fig. S1 Syntheses procedures of cis-ID-OR, cis-ID-OR-4Cl, trans-ID-OR and trans-ID-OR-4Cl.
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1. General product 4,9-dihexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b']|dithiophene -4,9-diol
(Compound 2).

To a suspension of magnesium (2.45 g, 102 mmol) and iodine (25 mg, 0.1 mmol) in dry THF (40
mL) was added 1-bromohexane (11.22 g, 68 mmol) slowly under argon, and then the mixture was
refluxed for 1 h. The prepared hexyl-1-magnesium bromide (2.55 M, 40mL, 102 mmol) was added
to a solution of compound 1 (2 g, 6.8 mmol) dissolving in THF (20 mL) at room temperature under
argon. The mixture was refluxed for 12 h and then allowed to cool to room temperature. The aqueous
phase was extracted three times with dichloromethane. The organic phase was dried (MgSO4) and
concentrated using a rotary evaporator. The residue was purified by silica gel chromatography using
hexanes to DCM/hexanes (1:10) as eluent to give low polarity compound [Compound 2 (4R,9S)]
first and then the high polarity compound [Compound 2 (4R,9R)/ Compound 2 (4S,9S)], based on
their difference in polarity.

(4R,95)-4,9-dihexyl-4,9-dihydro-s-indaceno|[ 1,2-b:5,6-b'|dithiophene-4,9-diol [Compound 2
(4R,9S)] (1.25 g, 40%)'H NMR (300 MHz, CDCls) & (ppm): 7.34 (s, 2 H), 7.25 (d, ] = 8.0 Hz, 2 H),
7.07 (d,J=8.0 Hz, 2 H), 2.16 (m, 2 H), 1.97 (m, 2 H), 1.60 (s, 2 H), 1.16 (m, 16 H), 0.88 (t, ] = 6.8
Hz, 6 H).

(4R,9R)-4,9-dihexyl-4,9-dihydro-s-indaceno[ 1,2-b:5,6-b']dithiophene-4,9-diol
/(48,95)-4,9-dihexyl-4,9-dihydro-s-indaceno[ 1,2-b:5,6-b'|dithiophene-4,9-diol

[Compound 2 (4R,9R)/Compound 2 (4S,95)] (1.29 g, 41%). "H NMR (300 MHz, CDCI3) § (ppm):
7.25(s,2 H), 7.20 (d, J = 8.0 Hz, 2 H), 7.01 (d, J = 8.0 Hz, 2 H), 2.43 (s, 2 H), 2.11 (m, 2 H), 1.92 (s,
2 H), 1.14 (m, 16 H), 0.80 (t, ] = 6.8 Hz, 6 H).

2. General product 4,9-dihexyl-4,9-bis(hexyloxy)-4,9-dihydro-s-indaceno [1,2-b:5,6-
b'|dithiophene (Compound 3)

A sample of NaH (1.04 g, 60% in mineral oil, 26 mmol) was washed with hexanes and suspended in
anhydrous THF (40 mL) at 0 °C. Compound 2 (1.2 g, 2.6 mmol) dissolving in anhydrous DMF (10

mL) was added slowly under argon, and the reaction mixture at room temperature under argon. To
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this mixture 1-bromohexane was added dropwise (4.26 g, 26 mmol). The mixture was heated at 120
°C for 12 h and then allowed to cool to room temperature. The aqueous phase was extracted three
times with dichloromethane. The organic phase was dried (MgSO4) and concentrated using a rotary
evaporator. The residue was purified by silica gel chromatography using hexanes as eluent to give
the product (4R,9S)-4,9-dihexyl-4,9-bis(hexyloxy)- 4,9-dihydro-s-indaceno[ 1,2-b:5,6-b']dithiophene
[Compound 3 (4R,9S)] (1.32 g, 80%)'H NMR (300 MHz, CDCI3) & (ppm): 7.27 (d, J = 8.0 Hz, 2
H), 7.25 (s, 2 H), 7.01 (d, J = 6.0 Hz, 2 H), 2.93 (t, ] = 8.0 Hz, 4 H), 2.15 (m, 2 H), 1.93 (m, 2 H),
1.40 (m, 4 H), 1.14 (m, 28 H), 0.78 (m, 12 H).
(4R,9R)-4,9-dihexyl-4,9-bis(hexyloxy)-4,9-dihydro-s-indaceno[ 1,2-b:5,6-b'] dithiophene/(4S,9S)-
4,9-dihexyl-4,9-bis(hexyloxy)-4,9-dihydro-s-indaceno [1,2-b:5,6-b']dithiophene [Compound 3
(4R,9R)/Compound 3 (45,9S)] (1.28 g, 79%). 'H NMR (300 MHz, CDCI3) & (ppm): 7.25 (d, J = 8.0
Hz, 2 H), 7.24 (s, 2 H), 7.01 (d, J = 6.0 Hz, 2 H), 2.90 (t, ] = 8.0 Hz, 4 H), 2.09 (m, 2 H), 1.88 (m, 2
H), 1.39 (m, 4 H), 1.18 (m, 28 H), 0.81 (m, 12 H).

3. General product 4,9-dihexyl-4,9-bis(hexyloxy)-4,9-dihydro-s-indaceno [1,2-b:5,6-
b'|dithiophene-2,7-dicarbaldehyde (Compound 4)

To a solution of compound 3 (1.2 g, 1.9 mmol) in THF (60 mL) at =78 °C was added 2.0 M n-
butyllithium in hexane (2.85 mL, 5.7 mmol) dropwise slowly under argon. The mixture was stirred at
—78 °C for 1 h, and then anhydrous DMF (65.8 mg, 6.0 mmol) was added. The mixture was stirred
overnight at room temperature. Brine (50 mL) was added and the mixture and aqueous phase was
extracted three times with dichloromethane. The organic phase was dried (MgSO4) and concentrated
using a rotary evaporator. The residue was purified by silica gel chromatography using hexanes to
DCM/hexanes (1:5) as eluent to give the product (4R,9S)-4,9-dihexyl-4,9-bis(hexyloxy)-4,9-
dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-dicarbaldehyde [Compound 4 (4R,9S)] (1.32 g,
80%)'H NMR (300 MHz, CDCI3) & (ppm): 9.90 (s, 2 H), 7.62 (s, 2 H), 7.46 (s, 2 H), 2.93 (t, ] = 8.4
Hz, 4 H), 2.15 (m, 2 H), 1.89 (m, 2 H), 1.42 (m, 4 H), 1.18 (m, 28 H), 0.80 (t, J = 6.8 Hz, 12 H).

(4R,9R)-4,9-dihexyl-4,9-bis(hexyloxy)-4,9-dihydro-s-indaceno[ 1,2-b:5,6-b'] dithiophene-2,7-
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dicarbaldehyde/(4S,9S)-4,9-dihexyl-4,9-bis(hexyloxy) -4,9-dihydro-s-indaceno[ 1,2-b:5,6-
b']dithiophene-2,7-dicarbaldehyde [Compound 4 (4R,9R)/Compound 4 (4S,9S)] (1.28 g, 79%). 'H
NMR (300 MHz, CDCl3) & (ppm): 9.90 (s, 2 H), 7.67 (s, 2 H), 7.47 (s, 2 H), 2.92 (t, ] = 8.0 Hz, 4 H),
2.17 (m, 2 H), 1.88 (m, 2 H), 1.41 (m, 4 H), 1.22 (m, 28 H), 0.79 (t, ] = 6.8 Hz, 12 H).

4. General product ID-OR

To a solution of compound 4 (250 mg, 0.36 mmol) and 1,1-dicyanomethylene-3-indanone (350 mg,
1.8 mmol) in dry CHCIl3 (50 mL) was added pyridine (1 mL) under argon. The mixture was refluxed
for 12 h and then allowed to cool to room temperature. The aqueous phase was extracted three times
with CHCIl3. The organic phase was dried (MgSO4) and concentrated using a rotary evaporator. The
residue was purified by silica gel chromatography using hexanes to DCM/hexanes (1:3) as eluent to
give the product 2,2'-((2Z,2'2)-(((4R,95)-4,9-dihexyl-4,9-bis(hexyloxy)-4,9-dihydro-s-indaceno[ 1,2-
b:5,6-b'] dithiophene-2,7-diyl)bis(methanylylidene))bis(3-ox0-2,3-dihydro-1H-indene-2,1-
diylidene)) dimalononitrie (trans-ID-OR) (255 mg, 68%)'H NMR (300 MHz, CDCI3) & (ppm): 8.99
(s, 2 H), 8.67 (d,J=6.8 Hz, 2 H), 7.92 (dd, Ji1= 8.4 Hz, Jo.=3.2 Hz, 2 H), 7.77 (m, 6 H), 7.60 (s,2 H),
2.94 (m, 4 H), 2.18 (m, 2 H), 1.96 (m, 2 H), 1.47 (m, 4 H),1.18 (m, 28 H), 0.78 (m, 12 H).

3C NMR (300 MHz, CDCl3) & (ppm): 188.25, 160.29, 159.86, 154.26, 153.14, 141.36, 139.95,
138.31, 137.46, 136.89, 135.29, 134.60, 125.38, 123.89, 122.81, 116.78, 114.50, 85.37, 69.75, 64.47,

39.23,31.92, 31.55, 29.99, 29.69, 29.48, 29.35, 25.64, 24.04, 22.57, 14.06, 14.02.
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Fig. S2 'H NMR and '3C NMR spectra of trans-ID-OR.
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2,2°-((22,2°Z)-(((4S,95)-4,9-dihexyl-4,9-bis(hexyloxy)-4,9-dihydro-s-indaceno [1,2-b:5,6-
b’]dithiophene-2,7-diyl)bis(methanylylidene))bis(3-0x0-2,3-dihydro-1H-indene-2,1-
diylidene))dimalononitrile/2,2°-((2Z,2°Z)-(((4R,9R)-4,9-dihexyl-4,9-bis(hexyloxy)-4,9-dihydro-s-
indaceno[1,2-b:5,6-b’]dithiophene-2,7-diyl)bis(methanylylidene))bis(3-0x0-2,3-dihydro-1H-indene-
2,1-diylidene))dimalononitrile (Cis-ID-OR) (250 mg, 67%)'H NMR (300 MHz, CDCI3) & (ppm):
8.99 (s,2 H),8.70 (d,J = 6.8 Hz, 2 H), 7.95 (dd, Ji1= 8.4 Hz, J.= 3.2 Hz, 2 H), 7.77 (m, 6 H), 7.59
(s,2 H), 2.95 (m, 4 H), 2.14 (m, 2 H), 1.95 (m, 2 H), 1.44 (m, 4 H),1.18 (m, 28 H), 0.80 (m, 12 H).
13C NMR (300 MHz, CDCl3) & (ppm):

196.17, 188.30, 160.38, 159.82, 154.24, 153.12, 141.34, 139.97, 138.30, 137.44, 136.91, 135.32,
134.63, 125.40, 123.91, 122.5, 116.75, 114.53, 85.37, 69.75, 64.47, 39.23, 31.54, 29.98, 29.70,

29.47,25.64, 24.04, 22.56, 14.06, 14.02.
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Fig. S3 'H NMR and '*C NMR spectra of cis-ID-OR.
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To a solution of compound 4 (250 mg, 0.36 mmol) and 2-(5,6-dichloro-3-o0x0-2,3-dihydro-1H-inden-
1-ylidene)malononitrile (473 mg, 1.8 mmol) in dry CHCl3 (50 mL) was added pyridine (1 mL) under
argon. The mixture was refluxed for 8 h and then allowed to cool to room temperature. The aqueous
phase was extracted three times with CHCls. The organic phase was dried (MgSO4) and concentrated
using a rotary evaporator. The residue was purified by silica gel chromatography using hexanes to
DCM/hexanes (1:2) as eluent to give the product 2,2'-((2Z,2'Z)-(((4R,9S)-4,9-dihexyl-4,9-
bis(hexyloxy)-4,9-dihydro-s-indaceno[ 1,2-b:5,6-b']dithiophene-2,7-
diyl)bis(methanylylidene))bis(5,6-dichloro-3-0x0-2,3-dihydro-1H-indene-2,1-
diylidene))dimalononitrile (trans-ID-OR-4Cl) (212 mg, 50%)'H NMR (300 MHz, CDCl3) § (ppm):
8.95 (s,2 H), 8.77 (s, 2 H), 8.00 (dd, Ji= 8.4 Hz, Jo=3.2 Hz, 2 H), 7.78 (s, 2 H), 7.62 (m,2 H), 2.94
(m, 4 H), 2.15 (m, 2 H), 1.98 (m, 2 H), 1.45 (m, 4 H),1.18 (m, 28 H), 0.80 (m, 12 H). '*C NMR (300
MHz, CDCIs) 6 (ppm):186.01, 160.99, 158.01, 154.55, 153.56, 141.53, 140.00, 139.90, 139.71,
139.09, 138.95, 138.59, 137.53, 136.01, 127.08, 125.36, 121.98, 117.00, 114.12, 114.07, 85.38,

70.47, 64.55, 39.26, 31.55, 31.24, 29.97, 29.70, 29.44, 25.64, 24.05, 22.56, 14.06, 14.02.
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2,2'-((2Z,2'Z)-(((4S,95)-4,9-dihexyl-4,9-bis(hexyloxy)-4,9-dihydro-s-indaceno[ 1,2-b:5,6-
b'ldithiophene-2,7-diyl)bis(methanylylidene))bis(5,6-dichloro-3-ox0-2,3-dihydro-1H-indene-2,1-
diylidene))dimalononitrile/2,2'-((2Z,2'Z)-(((4R,9R)-4,9-dihexyl -4,9-bis(hexyloxy) -4,9-dihydro-s-
indaceno[1,2-b:5,6-b'|dithiophene-2,7-diyl) bis(methanylylidene))bis(5,6-dichloro-3-oxo0-2,3-
dihydro-1H-indene-2,1-diylidene))dimalononitrile (cis-ID-OR-4Cl) (200 mg, 47%)'H NMR (300
MHz, CDCIs) 6 (ppm): 8.94 (s, 2 H), 8.76 (d, 2 H), 7.95 (d, 2 H), 7.78 (s, 2 H), 7.63 (s,2 H), 2.98 (m,
4 H), 2.17 (m, 2 H), 1.96 (m, 2 H), 1.46 (m, 4 H),1.22 (m, 28 H), 0.80 (m, 12 H). 3C NMR (300
MHz, CDCIs) 6 (ppm):185.98, 161.03, 158.05, 154.57, 153.57, 141.53, 139.99, 139.70, 139.07,
138.98, 138.58, 137.53, 135.99, 127.06, 125.34, 131.95, 117.01, 114.11, 85.39, 70.46, 64.59, 39.27,

38.14, 31.55, 31.23, 29.98, 29.70, 29.44, 25.64, 24.04, 22.56, 14.06, 14.02
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Fig. S6 Mass spectra of (a) Cis-ID-OR and (b) trans-ID-OR. The formulas of both molecules are

C66HO66N4S204 (Mw =1042).
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Device fabrication

We fabricated OPV devices using an inverted structure of glass/ITO/ZnO/active layer/MoOs/Ag. The
ITO coated glass [Sanyo, Japan (6.4 Q sq!)] was cleaned with detergent, ultrasonicated in DI water,
acetone and isopropyl alcohol for 20 min, dried in an oven at 120 °C for 30 min. To prepare the sol—
gel ZnO precursor solution, the zinc acetate (3.15 g), ethanolamine (0.9 mL), and 2-methoxyethanol
(29.1 mL) were mixed and stirred at 25 °C for 3 days. The ITO coated glass substrate was processed
by oxygen plasma (Harrick Plasma, PDC-32G) surface treatment lasting for 5 min. The ZnO
precursor solution passing through a 0.45-um filter was spin casted onto the ITO-coated substrate
and heated at 160 °C for 10 min in the air to form a ZnO electron transport layer with a thickness of
approximately 30 nm. For the binary active layer, the blended solution was prepared via dissolving
PM6 (8 mg/ml) and Y6 (8 mg/ml) in chloroform (CF) solvent with 0.75 vol % 1-chloronaphthalene
(CN). For the PM6:Y6 based ternary active layer doped stereoisomers small molecule, the precursor
solution was prepared via dissolving PM6, Y6 and stereoisomers small molecule (cis-ID-OR, trans-
ID-OR, cis-ID-OR-4Cl or trans-ID-OR-4Cl) in a weight ratio of 1:1:0.2 in CF (17.6 mg/ml for total
concentration) containing 0.75 vol% 1-CN. These solution were stirred overnight in an Ar-filled
glove box. Then, it was spin casted onto the glass/ITO/ZnO substrate at room temperature while the
thickness of the active layer was optimized by controlling the spin rate and the concentration of the
precursor solution. The evaporation equipment with pressures below 107® Torr was used to
sequentially deposited a MoOs3 layer (3 nm) and an Ag layer (100 nm) onto the active layer. Among
them, the active area was 0.1 cm? which was determined through an overlapping between ITO and
Ag. To evaluate the electron and hole trap densities, device structures of ITO/ZnO/active layer/Au
and ITO/PEDOT:PSS/active layer/Ag were fabricated, respectively, based on the space-charge
limited current (SCLC) model.

Characterization

UV-Vis absorption (Jasco V-650 UV) and photoluminescence (PL) spectra (HORIBA Jobin Yvon)

were applied to characterize the optical properties of active layers. Cyclic voltammetry (CV; CH
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Instruments 6116E) was used to measure the oxidation and reduction potential of cis-ID-OR, trans-
ID-OR, cis-ID-OR-4Cl and trans-ID-OR-4Cl to determine the HOMO and LUMO energy level
values. The current density—voltage (J—V) and Joh—Vesr curves of the devices were obtained by using
a computer-controlled Keithley 2400 source measurement unit and an Enlitech simulator (AAA
Class Solar Simulators) under AM 1.5 illumination (1000 W-m?2). The illumination intensity of the
EQE was calibrated using a standard Si reference cell cover with a KG-5 filter and matched using an
integration system combining a monochromator (Newport 74100), a lock-in amplifier (Stanford
Research Systems SR 830), and a chopper to measure the EQE spectra. Grazing-incidence wide-
angle X-ray scattering (GIWAXS) analyses was performed at the TLS-23 A beamline station in the
National Synchrotron Radiation Research Center (NSRRC) Hsinchu Taiwan, using the X-ray
wavelength of 1.24 A and incident angle of 0.2°. The scattering intensities are reported as intensity
versus q [where q = (4n/A) sin(26/2)], along with the scattering angles in these patterns; calibration
was performed using silver behenate. Surface morphologies of active layers were characterized
under ambient conditions using tapping-mode atomic force microscopy (AFM, Bruker Dimension

Edge).
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Fig. S7 (a) Cyclic voltammetry curves of the cis-ID-OR, trans-ID-OR, cis-ID-OR-4Cl and trans-ID-
OR-4CIL. (b) Energy level diagram of each component in the inverted device.
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Fig. S8 (a) UV—Vis absorption spectra of Cis-ID-OR, trans-ID-OR, cis-ID-OR-4Cl and trans-ID-OR-
4Cl in chloroform solution. (b) Circular dichroism spectroscopy of cis-ID-OR and trans-ID-OR.
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Fig. S9. J-V characteristics of the devices with PM6:cis-ID-OR and PM6:trans-ID-OR active layers.

Table S1. Photovoltaic parameters of OPV devices incorporating the binary PM6:cis-ID-OR and
PMé6:trans-ID-OR active layers.

Ratio 1:1.2 (CN:0.75%)

Z ps 0 1 ) . t 0
CicarierAae =oAL FF (%) PCE (%) Best PCE(%)
PM6:cis-ID-OR 14722053 09110.003 67.3£1.75 9%0.26 9.62
PMGé: trans-ID-OR 9831054 0.7910.008 51.6*%1.37 410.19 4.17
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OPV.
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Table S2. Detailed Energy loss parameters of the binary and ternary OPVs

AE
Blend B [eV] Vo [Vl V, [Vl E.[eV] AE [eV] AE_ [V] [V]non.md EQE,,
PM6:Y6 1448  0.88  0.568 1402 0.046 0274 0248  638x10°
PM6:Y6:cis-ID-OR 1444 089  0.554 1407 0.037 0274 0243  781x10°

PM6:Y6:trans-ID-OR  1.449 (.88 0.569 1.406 0.043 0.276 0.250 5.96x 1()'5

Both cis-ID-OR and trans-ID-OR have relatively higher LUMO levels than Y6, which promote the
enhancement of the charge transfer energy (Ect) in the ternary blend. This can further suppress the
loss of AEct (AEct = Eg - Ecr). Incorporating cis-ID-OR in the ternary blend active layer exhibits
the lowest AEnon-rad, Wwhich may be attributed to its fine-tuned molecular packing in the blend film,
obtaining the largest CCL of the (010) n-xt stacking plane in the ternary blend with Y6. This
suppresses defect-induced charge recombination, which aligns with the improvement in trap-assisted
recombination observed in the PM6:Y6:Cis-ID-OR ternary blend. When trans-ID-OR is blended in
PM6:Y6, the CCL was decreased and a significant decrease in diffraction signal of the trans-ID-
OR:Y6 binary. This phenomenon indicates disorder in the trans-ID-OR acceptor blend,

corresponding to a larger AEnon-rad and more severe trap-assisted recombination.
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Table S3. Optoelectronic parameters calculated from Jph—Vefr curves.

Active layer configuration Jsat (MA cm?) P(E,T) (%) Gmax(m3s™) n
PM6:Y6 26.35 92.6 1.65x10% 1.49
PM6:Y6:cis-ID-OR 26.59 96.1 1.66x10% 1.45
PM6:Y6:trans-ID-OR 26.23 95.2 1.64x10% 1.51
PM6:Y6:cis-ID-OR-4Cl 25.79 93.6 1.61x10% 1.48
PM6:Y6:trans-ID-OR-4Cl 25.72 94.5 1.61x10% 1.45

Jph = Jlight — Jdark eq (1)

Vett=Vo—Va eq (2)

Jsat = qGmax L eq (3)

Jph = quaX P(E,T)L €q (4)
kT
Voe % = =In(Pighe)  €q (5)

The Jph, Jiight, Jdark and Jsat, are the photo, light, dark and saturation current densities, respectively; Va
is the applied voltage; Vo is the voltage at Jon = 0; q is the elementary charge; and L is the thickness
of the blend film. The Jph is determined by subtracting dark from light current densities at short
circuit condition. The values of Jph of the devices increased significantly at low Vefr (< 0.1 V) and
became saturated after 0.2 V. Table S3 summarizes the parameters of Jsat, P(E, T) and Gmax calculated
from the Jph—Vefr curves. The value of Jsat related to the absorbed incident photon flux was obtained
from Jph under a condition of Vesrat 2.5 V, and then the obtained Jsat was applied in eq (3) to
determine the Gmax value. The P(E, T) can be calculated from the eq (4) or by the ratio of Jpn/ Jsat. The
exciton dissociation probability in blend films was related to the size of their phase-segregated
domains, significantly affecting the fill factor of the corresponding devices.

For evaluating the degree of charge carrier recombination relative to trap-assisted
recombination, the fitted n value can be obtained by eq (5), where K is the Boltzmann constant, T is
the absolute temperature in K, and q is the elementary charge. The fitted n values could be used to

evaluate the degree of charge carrier recombination relative to trap-assisted recombination.
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Fig. S11 2-D GIWAXS profiles of (a) PM6:Y6 binary, (b) PM6:Y 6:Cis-ID-OR, (c) PM6:Y 6:trans-ID-
OR, (d) PM6:Y6:Cis-ID-OR-4Cl, and (e) PM6:Y6:trans-ID-OR-4Cl ternary blend films. (PM6:Y6
=1:1 wt ratio, and PM6:Y 6:the third component = 1:1:0.2 wt ratio)
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Fig. S12 2-D GIWAXS profiles of pristine (a) PM6, (b) Y6, (c) cis-ID-OR, (d) trans-ID-OR, (¢) cis-
ID-OR-4Cl, and (f) trans-ID-OR-4Cl films.
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Fig. S13 1-D GIWAXS profiles of pristine PM6, Y6, cis-ID-OR, trans-ID-OR, cis-ID-OR-4Cl, and
trans-ID-OR-4Cl films.
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Fig. S14 2-D GIWAXS profiles of (a) Y6:cis-ID-OR, (b) Y6:trans-ID-OR, (c) Y6:cis-ID-OR-4Cl, and

(d) Y6:trans-ID-OR-4Cl binary blend films.
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