Supplementary information

Dual-Functional Metal-Organic Framework for Efficient Removal and Fluorescent Detection of Perfluorooctanoic Acid (PFOA) from Water

Rana Dalapati, Jiangfan Shi, Matthew Hunter and Ling Zang*

Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States.

*Email: lzang@eng.utah.edu

Figure S1. Visual color changes of the MOF material at each stage of the modification process.

Figure S2. FT-IR spectra of UiO-66-NH₂ and UiO-66-N(CH₃)₃⁺ highlighting the disappearance of absorption bands near 3316 and 3480 cm⁻¹, corresponding to the $-NH_2$ group in UiO-66-NH₂, after cationic modification.

Figure S3. FT-IR spectra of UiO-66-N(CH₃)₃⁺, UiO-66-N(CH₃)₃⁺@SRB and free SRB.

Figure S4. (a) Aromatic region and (b) selected region of the ¹H NMR spectra of aminoterephthalic acid (NH₂-BDC) and quaternized aminoterephthalic acid (UiO-66-N(CH₃)₃⁺-BDC) ligands, obtained after MOF digestion with HF and recorded in DMSO-d₆. Highlighted areas indicate key spectral features corresponding to structural modifications.

Figure S5. (a) Full-range and (b) selected region of the ¹H NMR spectra of UiO-66- $N(CH_3)_3^+$ @SRB after MOF digestion with HF, alongside free SRB recorded in DMSO-d₆.

Figure S6. Field emission-SEM images of (a) UiO-66-NH₂ and (b) UiO-66-N(CH₃)₃⁺.

Figure S7. Bar plot showing the dose-dependent PFOA removal efficiency of UiO-66-N(CH_3)₃⁺ from a 1000 ppm solution of PFOA.

Figure S8. PFOA uptake measured for UiO-66-N(CH₃)₃⁺ (500 mg/L) in presence of different salts at 1000 ppm.

Figure S9. Time-dependent PFOA removal efficiency of UiO-66-N(CH₃)₃⁺ (20 mg/L) from a 50 ppb solution. Control experiments conducted under the same conditions, but without the MOF, showed no observable PFOA removal.

Figure S10. (a) Adsorption kinetics of PFOA by UiO-66-N(CH₃)₃⁺ (20 mg/L) tested with a 50 ppb solution, fitted using the pseudo-first-order (PFO) kinetic model. (b) Calibration plot obtained from LC-MS analysis, used for determining PFOA concentrations in the low-concentration range.

Figure S11. (a) PFOA uptake of UiO-66-N(CH₃)₃⁺ (500 mg/L) from 1000 ppm solutions over 5 adsorption-desorption cycles. (b) PFOA removal efficiency of UiO-66-N(CH₃)₃⁺ (500 mg/L) from 100 ppm solutions over 5 adsorption-desorption cycles.

Figure S12. PXRD patterns of UiO-66-N(CH_3)₃⁺ before and after treatment with 1000 ppm PFOA solution, showing structural stability upon exposure.

Figure S13. FT-IR spectra of UiO-66-N(CH_3)₃⁺ after treatment with increasing concentrations of PFOA solution.

Figure S14. Elemental mapping images of UiO-66-N(CH_3)₃⁺ before PFOA treatment, showing the spatial distribution of key elements within the MOF structure.

Figure S15. EDS spectrum of UiO-66-N(CH_3)₃⁺ before PFOA treatment.

Figure S16. Elemental mapping images of UiO-66-N(CH_3)₃⁺ after treatment with 1000 ppm PFOA solution, illustrating elemental distribution changes associated with PFOA adsorption.

Figure S17. EDS spectrum of UiO-66-N(CH_3)₃⁺ after treatment with a 1000 ppm PFOA solution.

Table	S1:	Changes	in	iodide	and	fluoride	content	in	UiO-66	$-N(CH_3)_{3^+}$	following	adsorption
treatm	ent w	with increa	isin	g conce	entra	tions of P	PFOA so	luti	on, indic	cating ion	exchange be	ehavior.

Samples	lod	ide	Fluc	oride	Ratio of F/I	
	Weight (%)	Atomic (%)	Weight (%)	Atomic (%)	Weight (%)	Atomic (%)
UiO-66-N(CH ₃) ₃ ⁺	9.3	1.2	0.7	0.6	0.075	0.5
UiO-66- N(CH ₃)₃+@100 ppm PFOA	3.4	0.5	6.3	5.7	1.852	11.4
UiO-66- N(CH ₃)₃+@300 ppm PFOA	2.9	0.4	8.2	6.6	2.827	16.5
UiO-66- N(CH ₃)₃+@500 ppm PFOA	2.8	0.4	12.2	11.2	4.357	28.0
UiO-66- N(CH ₃) ₃ +@1000 ppm PFOA	2.4	0.3	15.3	13.1	6.375	43.666

Figure S18. Variation in the fluoride-to-iodide ratio in UiO-66-N(CH₃)₃⁺ after treatment with increasing concentrations of PFOA solution, highlighting the increasing extent of ion exchange.

Figure S19. (a) Change in emission intensity of UiO-66-N(CH₃)₃⁺@SRB MOF suspension in the presence of PFOA and PFOS (both at 5 μ M). (b) Bar plot illustrating the sensor's selectivity for PFOA over PFOS.

Figure S20. Emission intensity changes of UiO-66-N(CH₃)₃⁺@SRB MOF suspension in the presence of various tested analytes including PFOA (all at 5 μ M), demonstrating selectivity toward PFOA.

Figure S21. ¹H NMR spectra of the molecules released from UiO-66-N(CH₃)₃⁺@SRB before and after PFOA addition, recorded in DMSO-d₆, showing the emergence of characteristic SRB signals upon PFOA-induced displacement. The inset shows the zoomed-in region (6.5–8.5 ppm), highlighting the characteristic peaks of SRB.