Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Performance Optimization of Solution-processed TADF-OLEDs Using Core Identical Small, Medium, and High Molecular Weight Hosts

4

1

5 Shinyoung Kim[¶], Chae Yeong Park[¶], Nagaraju Peethani[¶], Ha Yeon Kim, Haeun Kwak, Subin

6 Kwon, Yeseo Lee, Chang Seop Hong, Sungnam Park, Min Ju Cho*, Dong Hoon Choi*

7

8 Department of Chemistry, Research Institute for Natural Sciences, Korea University,

9 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea

10

11 *Corresponding authors: M. J. Cho (E-mail: chominju@korea.ac.kr); D. H. Choi (E-mail:

12 <u>dhchoi8803@korea.ac.kr</u>)

13 [¶]S. Kim, C. Y. Park, and P. Nagaraju equally contributed to this work.

14

15 General Information

16 Characterization and measurements

17 All UV-visible absorption spectra of the polymers in toluene solutions and thin films were recorded using a UV-visible absorption spectrometer (Agilent 8453, photodiode array, $\lambda = 190$ -18 1100 nm). The fluorescence (77 and 298 K) and phosphorescence (77 K, delay time = 1.0 ms) 19 spectra were recorded using an F-7100 fluorescence spectrophotometer (HITACHI). Proton 20 nuclear magnetic resonance (¹H NMR, 500 MHz) and carbon nuclear magnetic resonance (¹³C 21 NMR, 125 MHz) spectra were recorded in CDCl₃ using Varian Mercury spectrometers 22 23 (Cambridge Isotope Laboratories, Inc.). The masses of the synthesized compounds were determined by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass 24 25 spectrometry (MALDI-TOF/TOF[™] 5800 system, AB SCIEX) at the Korea Basic Science Institute 1 (Seoul). Elemental analysis was performed using a FlashSmartTM elemental analyzer (Thermo 2 Fisher Scientific). All electrochemical experiments were conducted using a Biologic VSP3e 3 potentiostat controlled by EC-Lab v11.43 software. The electrochemical properties were 4 characterized through cyclic voltammetry using an electrolyte solution prepared by dissolving 5 tetrabutylammonium hexafluorophosphate (Bu₄NPF₆) in acetonitrile. A Pt wire and Ag/AgCl 6 electrode (3.4 M KCl leak-free 2.0 mm diameter, Innovative Instruments) were used as the counter 7 and reference electrodes, respectively.

8 Time-resolved photoluminescence (TRPL) experiments were carried out by exciting the 9 doped films with a 355-nm pulse at 10 Hz using an Nd:YAG laser (Q-smart 850, Lumibird FR). 10 The TRPL signals were collected using a lens (focal length = 10 cm), passed through a 11 monochromator, and detected using a photomultiplier tube (PMT) connected to a 100-MHz digital 12 oscilloscope (DSO-X 3014A, Keysight).

The absolute photoluminescence quantum yields (PLQYs) of the films were determined using
an integrating sphere (ILF-835) equipped with an FP-8500 spectrofluorometer (JASCO).

15

16 Theoretical calculations

17 Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) 18 calculations were performed using the Gaussian 16 software package with the B3LYP functional 19 and 6-31G(d) basis set. The polarizable continuum model with integral equation formalism 20 (IEFPCM) was used for solvation (toluene). The HOMO and LUMO were obtained from the 21 optimized structures of the molecules in the ground state. The vertical excitation energies (S₁ and 22 T_n states) were obtained by calculating the Franck–Condon states from the ground state using TD- DFT. In addition, the natural transition orbitals (NTOs) of the electronic transitions were calculated
 to examine the electron and hole wavefunctions and characterize the electronic transition
 properties.

4

5 OLED device fabrication

OLED devices were fabricated on a glass substrate coated with a transparent ITO layer (150 nm) 6 as the anode, with a sheet resistance of 15 Ω cm⁻² and an active pattern size of 2 × 2 mm². The 7 substrates were cleaned in distilled water for 10 min and isopropanol for 20 min using an ultrasonic 8 9 bath and subsequently dried using hot air. PEDOT:PSS was directly spin-coated onto an ITO plate to form a hole injection layer (30 nm) and subsequently heated at 155 °C for 15 min on a hot plate. 10 A mixture of hosts (CzCzPh-mAd, Cy-2(Ph-mCzCz), P(Ph-mCzCz)) and the 4FLDABNA emitter 11 12 (96:4 weight ratio, 0.5 wt.% in toluene) was spin-coated to fabricate the emitting layer. The emissive layers (EMLs) were formed by spin-coating the solutions at 3000 rpm for 30 seconds. 13 The thickness of the EML layers was measured using a spectroscopic ellipsometer (Woollam 14 Alpha-SE), and found to be approximately 30 nm. BmPyPB (50 nm) was used as the electron-15 transporting layer, and LiF (1 nm) and Al (100 nm) were vacuum-deposited in an inert chamber 16 under a pressure of 5 \times 10⁻⁶ Torr. The fabricated device was constructed with the following 17 configuration: glass substrate/ITO anode/PEDOT:PSS (30 nm)/host: 4 wt.% 4FlDABNA (30 18 nm)/BmPyPB (50 nm)/LiF (1 nm)/Al (100 nm). Fabrication was performed under ambient 19 20 conditions before the substrates were placed in a thermal vacuum evaporator to evaporate BmPyPB, LiF, and Al. 21

2 Fig. S1. ¹H NMR spectrum of 4,4'-(cyclohexane-1,1-diyl)bis(2-bromoaniline) (2)

2 Fig. S2. ¹³C NMR spectrum of 4,4'-(cyclohexane-1,1-diyl)bis(2-bromoaniline) (2)

2 Fig. S3. ¹H NMR spectrum of 3,3-(cyclohexane-1,1-diyl)bis(bromobenzene) (3)

2 Fig. S4. ¹³C NMR spectrum of 3,3-(cyclohexane-1,1-diyl)bis(bromobenzene) (3)

2 Fig. S5. ¹H NMR spectrum of Cy-2(Ph-mCzCz) (4)

2 Fig. S6. ¹³C NMR spectrum of Cy-2(Ph-mCzCz) (4)

2 Fig. S7. ¹H NMR spectrum of 9-(3-bromophenyl)-9*H*-3,9'-bicarbazole (6)

2 Fig. S13. ¹H NMR spectrum of 2-bromo-5-(*t*-butyl)-N¹,N¹,N³,N³-tetraphenylbenzene-1,33 diamine (11)

TOF/TOF™ Reflector Spec #1 MC=>BC=>SM5[BP = 1651.8, 17190]

2 Fig. S17. MALDI-TOF mass spectrum of 2-bromo-5-(*t*-butyl)-N¹,N³,N³-tetrakis(4-(9-(4-(*t*-3 butyl)phenyl)-9H-fluoren-9-yl)phenyl)benzene-1,3-diamine (12)

2 Fig. S18. ¹H NMR spectrum of 4FlDABNA (13)

TOF/TOF™ Reflector Spec #1 MC=>BC=>SM5[BP = 896.3, 14580]

TOF/TOF™ Reflector Spec #1 MC=>BC=>SM5[BP = 1661.8, 13682]

2 Fig. S22. Molecular orbitals of (a) Cy-2(Ph-mCzCz) and (b) P(Ph-mCzCz), as determined by
3 DFT calculations at the B3LYP/6-31G(d) level.

6 Table S1. Molecular orbital energies of Cy-2(Ph-mCzCz) and P(Ph-mCzCz), as determined by
 7 DF

Energy Level (eV)	Cy-2(Ph-mCzCz)	P(Ph-mCzCz)	
LUMO+3	-0.70	0.72	
LUMO+2	-0.82	-0.73	
LUMO+1	-0.87	-0.86	
LUMO	-1.01	-0.86	
НОМО	-5.01	-5.10	
HOMO+1	-5.11	-5.15	
HOMO+2	-5.54	-5.61	
HOMO+3	-5.59	-5.75	

2 Fig. S23. Natural transition orbitals (NTOs) of (a) CzCzPh-mAd, (b) Cy-2(Ph-mCzCz) and (c)
3 P(Ph-mCzCz) for the excited singlet (S₁) and triplet (T₁) states obtained by DFT calculations
4 (B3LYP/6-31G(d)).

6

8 Fig. S24. Optimized molecular structures of (a) *t*-DABNA and (b) 4FIDABNA, along with 9 HOMO and LUMO orbitals, S_1 , T_1 energy levels of (c) *t*-DABNA, and (d) 4FIDABNA. The 10 energies were calculated using DFT at the B3LYP/6-31G(d,p) level.

- 11
- 12

2 Fig. S25. Natural transition orbitals (NTOs) of (a) t-DABNA and (b) 4FIDABNA for the excited

3 singlet (S_1) and triplet (T_1) states obtained by DFT calculations (B3LYP/6-31G(d)).

2 Fig. S26. (a) TGA thermograms and (b) DSC traces of CzCzPh-mAd, Cy-2(Ph-mCzCz), and
3 P(Ph-mCzCz) hosts, measured at a heating rate of 10 °C/min under a nitrogen atmosphere.

2 Fig. S28. Cyclic voltammograms of the three host materials in (a) dichloromethane and (b) thin
3 films, and the two emitters in (c) dichloromethane and (d) thin films, respectively.

1 Table S2. Time-resolved photoluminescence (TRPL) properties and rate constants of neat and

2 films doped with 4FlDABNA.

	τ ₁ ^a (ns)	t 2 ^b (ns)	$k_1{}^c$ (×10 ⁸ s ⁻¹)	$k_2^{\ d}$ (×10 ⁸ s ⁻¹)	k _{FRET} ^e (×10 ⁸ s ⁻¹)	t _{FRET} f (ns)
CzCzPh-mAd	3.61	-	2.77	-		
CzCzPh-mAd :4FIDABNA	-	1.87	-	5.35	2.58	3.88
Cy-2(Ph-mCzCz)	4.47	-	2.24	-	2 40	4.03
Cy-2(Ph-mCzCz) :4FIDABNA	-	2.12	-	4.72	2.48	
P(Ph-mCzCz)	3.20	-	3.13	-		
P(Ph-mCzCz) :4FIDABNA	-	2.00	-	4.99	1.86	5.38

3 ^aHost fluorescence lifetime of host. ^bHost fluorescence lifetime of host: 4 wt% 4FlDABNA. ^cHost fluorescence rate

4 constant of host. ^d Host fluorescence rate constant of host: 4 wt% 4FIDABNA. ^e Fluorescence Resonance Energy

5 Transfer rate constant. ^fFluorescence Resonance Energy Transfer lifetime.

6

7

10 2(Ph-mCzCz), P(Ph-mCzCz) in film state. (b) TRPL signals were measured at 470 nm ($\lambda_{ex} = 11$ 340 nm) for doped films.

12

8

2 Fig. S30. Current density-voltage (J-V) characteristics of (a) electron-only devices (EODs) and

3 (b) hole-only devices (HODs) for CzCzPh-mAd, Cy-2(Ph-mCzCz), and P(Ph-mCzCz) films

4 doped with 4 wt% 4FlDABNA.

5

6

7

8 Fig. S31. Current density-voltage (J-V) characteristics of HODs based on CzCzPh-mAd, Cy-

9 2(Ph-mCzCz) and P(Ph-mCzCz). V_{app}: applied voltage to the device, V_{bi}: built-in potential

10 determined by the work-function difference between the two electrodes, V_a: voltage drop across

11 the device).

1 Table S3. Effect of drying time at 130°C on the electroluminescence performance of solution-

2 processed TADF-OLEDs using CzCzPh-based hosts doped with 4 wt% 4FlDABNA.

Drying Timeat 130 °C (min)	Host	Dopant	Doping Conc.	V m (V)	CE _{max} (cd/A)	PE _{mx} (Im/W)	Luminance (cd/m)	EQE(%)	EL _{mx} (nm)	FWHM (nm)	CIE(xy) at500cd/m ²
0	CzCzPh+mAd	4FIDABNA	4 wt%	3.53	16.6	13.0	1692	14.8	472	28.7	(0.12,0.14)
10	CzCzPh+mAd	4FIDABNA	4 wt%	3.55	5.96	4.16	1562	556	468	292	(0.13,0.14)
20	CzCzPhmAd	4FIDABNA	4 wt%	3.53	5.02	351	1480	4.59	472	29.0	(0.13,0.14)
40	CzCzPh+mAd	4FIDABNA	4 wt%	3.51	3.76	2.62	1408	3.52	472	28.8	(0.13,0.15)
0	Cy-2(Ph+mCzCz)	4FIDABNA	4 wt%	3.51	17.7	13.9	1998	15.4	472	30.1	(0.12, 0.16)
10	Cy-2(Ph-mCzCz)	4FIDABNA	4 wt%	3.53	165	12.9	1451	13.7	472	302	(0.13,0.15)
20	Cy-2(Ph+mCzCz)	4FIDABNA	4 wt%	3.51	133	105	1612	112	472	30.0	(0.13,0.15)
40	Cy-2(Ph+mCzCz)	4FIDABNA	4 wt%	3.51	11.0	8.66	1572	935	472	303	(0.13,0.15)
0	P(Ph-mCzCz)	4FIDABNA	4 wt%	4.17	3.52	2.76	436.7	237	472	305	(0.14, 0.15)
10	P(Ph-mCzCz)	4FIDABNA	4 wt%	4.15	2.75	1.92	493.8	232	472	32.6	(0.16,0.15)
20	P(Ph-mCzCz)	4FIDABNA	4 wt%	4.14	2.60	1.82	469.1	231	472	32.2	(0.15,0.15)
40	P(Ph+mCzCz)	4FIDABNA	4 wt%	4.05	3.01	2.10	486.6	225	468	31.9	(0.15,0.15)

3

Fig. S32. (a) Device configurations and energy diagram. (b) Current density-voltage-luminance
(*J*-*V*-*L*) characteristics. (c) EQE, power efficiency (PE), and current efficiency (CE) curves for
the devices. (d) Electroluminescence (EL) spectra of CzCzPh-based host films doped with 10
wt% 5TCzBN emitter. Inset: Emission image of the actual device.

8 Table S4. Electroluminescence (EL) performance of solution-processed TADF-OLEDs utilizing
9 CzCzPh-based hosts doped with 10 wt% 5TCzBN

	Host Dopant	$V_{\rm on}$	CE _{max}	PE _{max}	Luminance	EQE _{max}	EL _{max}	CIE (x,y)
Host		(V)	(cd/A)	(lm/W)	(cd/m^2)	(%)	(nm)	at 1000 cd/m ²
CzCzPh-mAd		3.80	32.5	20.4	2265	13.9	484	(0.19, 0.37)
Cy-2(Ph-mCzCZ)	5TCzBN	3.61	35.9	22.6	2981	14.5	492	(0.21, 0.41)
P(Ph-mCzCZ)		3.54	3.16	2.34	1508	2.34	492	(0.20, 0.40)

Table S5. Summary of EL performance of blue-emitting solution-processed OLEDs with a CIE
 y-coordinate below 0.2, as reported in the literature.

Device	Emitter Type	EQE _{max} (%)	λ _{EL} (nm)	FWHM (nm)	CIE(x,y)	REF
Cy-2(Ph-mCzCz): 4FIDABNA	MR-TADF	15.4	472	30	(0.12, 0.16)	This Work
PAc-BSS	MR-TADF	13.1	458	31	(0.16, 0.12)	S1
mCP: TBN-TPA	MR-TADF	1.08	464	32	(0.19, 0.19)	S2
mCP; TBN-TPA	MR-TADF	11.00	472	-	(0.12, 0.16)	S3
PYD2: Au-1:v-DABNA	MR-TADF	16.6	472	23	(0.14, 0.18)	S4
CzAcSF: CzBN	MR-TADF	14.7	480	35	-	S5
mCPCN: Me-FOBN	MR-TADF	11.3	458	32	(0.14, 0.09)	S6
H: S: D ₁	MR-TADF	9.68	467	18	(0.12, 0.13)	S7
CBP: 4CzFCN: KCTBC	TADF	13.9	-	-	(0.18, 0.13)	S8
mCP: TTSA	TADF	21.2	473	-	-	S9
mCP: TPA-s-Mes*B	TADF	10.3	454	-	(0.16, 0.12)	S10
PCzABTPy10	TADF	9.4	476	-	(0.17, 0.19)	S11
BOBTFB: TCTA	TADF	3.49	469	-	(0.15, 0.18)	S12

2 Fig. S33. Photoluminescence spectra of (a) 4FIDABNA and (b) *t*-DABNA in various solvents
3 (concentration: 1 × 10⁻⁵ M, 300 K).

6 Table S6. Summary of photoluminescence spectral data for 4FlDABNA and *t*-DABNA in various
7 solvents.

Solvent	4FID	ABNA	t-DABNA			
	$\lambda_{PL}(nm)$	FWHM (nm)	$\lambda_{PL}\left(nm\right)$	FWHM (nm)		
Hexane	462	20	452	20		
Toluene	468	26	460	22		
THF	469	26	461	23		
DCM	480	32	469	29		

1 References

- S1. F. Chen, L. Zhao, X. Wang, Q. Yang, W. Li, H. Tian, S. Shao, L. Wang, X. Jing and F.
 Wang, *Sci. China Chem.*, 2021, 64, 547–551.
- 4 S2. S. K. Keshri, G. Liu and T. Yasuda, Front. Chem., 2024, 12, 1375552.
- 5 S3. H. Je, M. J. Cho, N. Y. Kwon, S. H. Park, M. J. Kang, H. I. Baek, J. Youn, C. W. Han and
 D. H. Choi, *ACS Appl. Mater. Interfaces*, 2023, 15, 9792–9799.
- 7 S4. D. Zhou, S. Wu, G. Cheng and C.-M. Che, J. Mater. Chem. C, 2022, 10, 4590–4596.
- 8 S5. S. Xu, Q. Yang, Y. Zhang, H. Li, Q. Xue, G. Xie, M. Gu, J. Jin, L. Huang and R. Chen,
 9 *Chin. Chem. Lett.*, 2021, **32**, 1372–1376.
- 10 S6. X. Song, S. Shen, Y. Zhang, S. Gao, F. Guo, Y. Wang, S. Zou, Y. Zhang, D. Zhang, Y.
 11 Zhang *et al.*, *Adv. Opt. Mater.*, 2024, **12**, 2401505.
- 12 S7. H. W. Son, D. I. Kim, J. H. Kim, T. N. Le and M. C. Suh, *J. Ind. Eng. Chem. Res.*, 2025,
 13 141, 512–520.
- 14 S8. M. I. Alam, M. R. Nagar, A. Choudhury, J.-H. Jou and S. Grigalevicius, *Adv. Opt. Mater.*,
 2022, 10, 2200376.
- 16 S9. M. Li, J. Jiang, Y. Ning and A. Al-Ghamdi, Synth. Met., 2022, 289, 117122.
- S10. G. Liao, Y. Zhang, Z. Wang, B. Zhang, S. Zhang and Y. Li, *Adv. Opt. Mater.*, 2023, 11, 2301242.
- 19 S11. H. Deng, B. Yao, K. K. Dou, Y. Y. Song, C. J. Qin, H. M. Zhan and Y. X. Cheng, *Acta Polym. Sin.*, 2023, 54, 217–224.
- S12. J. Pan, S. Zhang, Z. Zhou, Y. Zhao, S. Jin, Y. Luo, W. Zhu and Y. Liu, *J. Mater. Chem. C*,
 2025, 13, 1165–1172.