1 Supporting Information

2 Efficient Deep-Blue Crystalline OLED via Hot Exciton Nanoaggregate

3 Sensitizing TTA Emitter

- 4
- 5 Hao Hu^{1,2}, Ping Lu^{3,} Feng Zhu^{1,2*} and Donghang Yan^{1,2}
- 6 ¹State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry,
- 7 Chinese Academy of Sciences; Changchun 130022, China.
- 8 ²School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei
- 9 230026, China.
- 10^{-3} State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University,
- 11 2699 Qianjin Avenue, Changchun 130012, China
- 12 *Corresponding author. Email: zhufeng@ciac.ac.cn
- 13 **Contents:**
- 14 1. atomic force microscopy (AFM) image
- 15 2. EL performance of Crystalline OLED
- 16 3. Comparisons of CHM-HENA-TTAD OLED with amorphous high EQE OLEDs
- 17 **4. Summary of PLQYs of films**
- **5.** Comparison of CHM-HENA-TTAD OLED with high-EQE amorphous OLEDs
- 19 6. References
- 20

1. Atomic force microscopy (AFM) image

23 Fig. S1 Average height of nanoaggregates (6–11 nm).

25 2. EL performance of Crystalline OLED

27

Fig. S2 Device Performance of CHM-HENA OLED. (a) The device structure of CHM-HENA OLED. (b)
EL spectrum at luminance of 1000cd/m² and the corresponding CIE of the device. (c) Voltagedependent current density and luminance. (d) Luminance-dependent external quantum efficiency
characteristics. (e) Luminance-dependent current efficiency characteristics. (f) Luminancedependent power efficiency characteristics.

33

35 3. Comparisons of CHM-HENA-TTAD OLED with amorphous high EQE OLEDs

³⁸

Fig. S3 Comparisons of CHM-HENA-TTAD OLED with amorphous high EQE OLEDs. (a) Comparison of voltage (*V*)-dependent luminance (*L*) curves. (b) Comparison of voltage (*V*)-dependent current density (*J*) characteristics. (c)Comparison of voltage (*V*) with dependent semi-log current density (*J*) characteristics. (d)Comparison of voltage (*V*) with semi-log emitted photons (*N*) between CHM-HENA-TTAD OLED and reported high EQE OLEDs based on TTA, TADF, phosphorescent materials. Reference data for comparison are taken from the relevant literature.

4. Summary of PLQYs of thin films

Table S1 Summary of PLQYs of films.

The film	Φ_{pl}	
2FPPICz neat crystalline film	0.29 ^{s1}	
PyPO neat film	0.76 ^{s2}	
DPASP neat film	0.99 ^{s3}	
CHM-HENA film	0.69	
CHM-HENA-TTAD film	0.85	

50~ 5. Comparison of CHM-HENA-TTAD OLED with high-EQE amorphous OLEDs

Device	CE/PE/EQE _{max} ^{a)} [cd A ⁻¹ /lm W ⁻¹ /%]	Input power ^{b)} [mW cm ⁻²]	differential resistance ^{b)} [kΩ·cm²]	Joule heat ^{b)} [mW cm ⁻²]	Ratio ^{b)} [%]	Ref.
CHM-HENA-TTAD	8.20/8.59/8.16	70.20	0.020	7.0	10.06	This work
DPASP	18.5/16.5/12.0	42.15	0.100	7.2	17.00	\$3
IDCz-DBS	-/29.8/31.1	24.32	0.329	5.2	21.19	S4
Flrpic	61.7/56.2/34.6	15.58	0.269	2.0	13.10	\$5

51 **Table S2** Comparison of CHM-HENA-TTAD OLED with high-EQE amorphous OLEDs.

³⁾ Maximum CE, PE and EQE values; ^{b)} The areal Joule heat loss of the CHM-HENA-TTAD compared with that

53 of other typical amorphous blue-emission OLEDs at a luminance of approximately 1000 cd/m². All reference data

54 $\,$ for comparison are extracted from the corresponding literature.

55

57 6. References

- 58 S1. J. Xin, P. Sun, F. Zhu, Y. Wang and D. Yan, J. Mater. Chem. C, 2021, 9, 2236-2242.
- 59 S2. Z. Cheng, C. Du, S. Ge, Y. Wang, F. Liu, Y. Chang, Y. Lv and P. Lu, *Chem. Eng. J.*, 2023, **474**.
- 60 S3. Y.-H. Chen, C.-C. Lin, M.-J. Huang, K. Hung, Y.-C. Wu, W.-C. Lin, R.-W. Chen-Cheng, H.-W. Lin and C.-H.
- 61 Cheng, *Chem. Sci.*, 2016, **7**, 4044-4051.
- 62 S4. T. Fan, Q. Liu, H. Zhang, X. Wang, D. Zhang and L. Duan, *Adv. Mater.*, 2024, **36**.
- 63 S5. D. Li, J. Li, D. Liu, W. Li, C.-L. Ko, W.-Y. Hung and C. Duan, ACS Appl. Mater. Interfaces, 2021, 13, 13459-
- 64 13469.