-- Supplementary Information --

Tuning the charge transfer and band shape of donor-acceptor covalent organic frameworks for optoelectronics

Arnau Garcia-Duran, Maria Fumanal*

Departament de Ciència de Materials i Química Física and IQTCUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain.

mfumanal@ub.edu

Section 1. Molecular structure of the Mod9-Mod12 monolayers.

Figure S1. Molecular structure of the D-A dimers of COF-1 (left) and COF-2 (right) chemical modifications of the Mod9-to-Mod12.

	COF-1	COF-2
Mod9		
Mod10		
Mod11		
Mod12		

Section 2. Optimized cell parameters.

Mod10

Mod11

Mod12

35.552549

34.852249

36.282791

21.204959

20.398075

20.682527

25.0

25.0

25.0

89.470178

89.467819

89.465974

89.787

89.787

89.787

53.302931

54.391247

55.311626

Table S1. Optimized cell parameters of the original (Mod0) and modified (Mod1-Mod12) 2D-COF monolayers of COF-1 and COF-2 given as a, b, c, alpha, beta, gamma in Å and degrees.

-								
	COF-1							
Mod0	34.188727	34.079827	25.0	90.0	90.0	77.380512		
Mod1	34.319906	34.133621	25.0	90.0	90.0	78.752333		
Mod2	34.208113	34.059567	25.0	90.0	90.0	78.455680		
Mod3	34.241489	34.095321	25.0	90.0	90.0	78.332226		
Mod4	34.288576	34.165730	25.0	90.0	90.0	78.510007		
Mod5	34.109156	34.104588	25.0	90.0	90.0	77.341644		
Mod6	34.178668	34.065307	25.0	90.0	90.0	76.906174		
Mod7	34.181477	34.177451	25.0	90.0	90.0	78.568293		
Mod8	34.074860	34.102926	25.0	90.0	90.0	76.955390		
Mod9	34.108780	33.997619	25.0	90.0	90.0	78.264896		
Mod10	33.877895	33.811213	25.0	90.0	90.0	77.548791		
Mod11	33.907578	33.824205	25.0	90.0	90.0	77.309858		
Mod12	34.333839	34.300006	25.0	90.0	90.0	74.229264		
	COF-2							
Mod0	36.181083	20.490657	25.0	89.46	6041	89.787	55.276740	
Mod1	36.025970	20.766860	25.0	89.46	6534	89.787	55.025096	
Mod2	36.018288	21.142236	25.0	89.46	9066	89.787	53.804915	
Mod3	35.976360	21.005028	25.0	89.46	8311	89.787	54.156663	
Mod4	36.050862	21.018469	25.0	89.46	7948	89.787	54.329322	
Mod5	35.973405	20.548020	25.0	89.46	6768	89.787	54.907234	
Mod6	36.060541	20.884280	25.0	89.46	7428	89.787	54.580560	
Mod7	35.965774	21.042067	25.0	89.46	8441	89.787	54.095513	
Mod8	35.985578	21.259343	25.0	89.46	9079	89.787	53.799158	
Mod9	35.859184	20.876537	25.0	89.46	7491	89.787	54.549919	

Section 3. HOCO, LUCO, Band gap and S₁ energies of the 26 monolayers.

		(COF-1			COF-2					
	HOCO	LUCO	BG	S1	0. S.	HOCO	LUCO	BG	S1	0. S.	
Mod0	-5.09	-2.61	2.48	2.25	1.25	-4.47	-2.12	2.36	1.95	0.08	
Mod1	-5.29	-3.26	2.03	1.94	0.23	-4.49	-2.14	2.35	2.00	0.13	
Mod2	-5.91	-3.17	2.75	2.39	1.47	-4.20	-2.05	2.16	1.91	0.09	
Mod3	-5.37	-2.26	3.11	2.65	1.16	-4.44	-2.32	2.12	1.79	0.09	
Mod4	-5.78	-2.55	3.23	2.77	1.13	-4.39	-1.96	2.43	2.32	0.05	
Mod5	-5.64	-2.70	2.94	2.51	1.35	-4.70	-2.84	1.86	1.43	0.04	
Mod6	-5.20	-2.57	2.63	2.40	1.34	-4.53	-2.83	1.71	1.69	0.03	
Mod7	-4.91	-1.88	3.04	2.64	1.07	-4.48	-2.17	2.31	1.95	0.12	
Mod8	-5.35	-2.49	2.85	2.54	1.54	-5.04	-2.74	2.30	1.90	0.11	
Mod9	-5.39	-2.73	2.67	2.23	1.49	-4.54	-2.42	2.12	1.95	0.12	
Mod10	-5.26	-3.13	2.13	1.98	0.90	-4.86	-2.81	2.05	1.67	0.13	
Mod11	-5.18	-3.46	1.72	1.66	0.38	-5.12	-2.29	2.83	2.43	1.36	
Mod12	-5.42	-2.48	2.94	2.67	1.16	-4.07	-2.11	1.96	1.94	0.02	

Table S2. HOCO, LUCO, Band Gap, S1 energies (all in eV) and oscillator strengths at PBE0 level are collected for the optimized COF-1 and COF-2 monolayers obtained with PBE-D3BJ.

Section 4. Characterization of the orbital contributions to the S_1 state.

Table S3. Occupied-virtual orbital main contributions (with coefficient > 0.2) to the lowest excited state singlet (S1) as computed with TD-DFPT implemented in CP2K with truncated PBE0 functional for the COF-1 monolayers. The overlap and CT number (1- Λ) associated with each contribution is given. The energy difference between the HOCO and HOCO-1, and the LUCO and LUCO+1 is provided in eV.

COF-1	НОСО	Orbitals	coefficien	t overlap	1-Λ	НОСО-НОСО-1	LUCO+1-LUCO
Mod0	205	205 206	0.817108	0.3976	0.6024	0.58	0.01
		203 206	0.309677	0.7629	0.2371		
		205 208	0.232210	0.6160	0.3840		
		205 207	0.213095	0.3061	0.6939		
		204 207	0.200053	0.7629	0.2371		
Mod1	281	281 283	-0.970332	0.2271	0.7729	0.87	0.00
Mod2	261	259 262	-0.589776	0.6247	0.3753	0.10	0.46
		260 262	-0.525749	0.4632	0.5368		
		261 263	-0.516994	0.7566	0.2434		
Mod3	241	241 242	0.901355	0.8231	0.1769	0.57	0.35
Mod4	301	301 302	0.792492	0.7020	0.2980	0.15	0.15
		300 305	0.259007	0.4084	0.5916		
		301 306	-0.258275	0.7355	0.2645		
Mod5	301	301 302	0.686099	0.6067	0.3933	0.39	0.06
		301 304	0.389841	0.7037	0.2963		
		299 303	-0.310574	0.7091	0.2909		
		300 302	-0.225452	0.6165	0.3835		
Mod6	217	217 219	0.704793	0.3609	0.6391	0.46	0.02
		215 219	0.388294	0.7192	0.2808		
		216 218	-0.321057	0.7478	0.2522		
		217 220	0.280295	0.6044	0.3956		
Mod7	301	301 302	0.905602	0.7405	0.2595	0.89	0.22
Mod8	241	239 242	0.672703	0.7714	0.2286	0.21	0.08
		240 243	0.418502	0.7370	0.2630		
		241 243	0.376339	0.3629	0.6371		
		241 244	-0.226791	0.4696	0.5304		
		241 246	-0.207065	0.8164	0.1836		
Mod9	205	205 206	0.795703	0.6636	0.3364	0.31	0.09
		205 208	0.274005	0.7627	0.2373		
		204 207	-0.255027	0.7300	0.2700		
		203 208	0.207529	0.7046	0.2954		
Mod10	205	205 207	-0.847040	0.3316	0.6684	0.76	0.01
		205 206	0.393103	0.3047	0.6953		
		203 207	0.216480	0.6865	0.3135		
Mod11	203	203 205	-0.959019	0.2192	0.7808	0.69	0.00
		203 204	-0.231472	0.2407	0.7593		
Mod12	217	215 218	0.591903	0.8419	0.1581	0.01	0.42
		217 218	0.569320	0.3412	0.6588		
		217 220	-0.346323	0.7293	0.2707		
		216 219	-0.328975	0.7289	0.2711		

Table S4. Occupied-virtual orbital main contributions (with coefficient > 0.2) to the lowest excited state singlet (S1) as computed with TD-DFPT implemented in CP2K with truncated PBE0 functional for the COF-2 monolayers. The overlap and CT number (1- Λ) associated with each contribution is given. The energy difference between the HOCO and HOCO-1, and the LUCO and LUCO+1 is provided in eV.

	НОСО	Orbitals	coefficien	t overlap	1-Λ	НОСО-НОСО-1	LUCO+1-LUCO
Mod0	191	191 192	0.907205	0.3798	0.6202	0.35	0.12
		191 193	-0.325119	0.3577	0.6423		
Mod1	203	203 204	0.946137	0.3781	0.6219	0.12	0.21
Mod2	215	215 216	0.959384	0.3105	0.6895	0.65	0.37
Mod3	227	227 228	0.962029	0.3797	0.6203	0.38	0.15
Mod4	227	227 228	0.862089	0.1302	0.8698	0.65	0.39
		227 230	-0.411954	0.3236	0.6764		
Mod5	255	255 256	0.731396	0.3689	0.6311	0.46	0.02
		255 257	0.640217	0.3799	0.6201		
Mod6	223	223 224	0.992261	0.0955	0.9045	1.15	0.65
Mod7	239	239 240	0.931339	0.3793	0.6207	0.52	0.25
Mod8	239	239 240	0.954064	0.4245	0.5755	0.30	0.25
Mod9	191	191 192	0.906080	0.2352	0.7648	0.65	0.46
		191 193	0.335835	0.4636	0.5364		
Mod10	191	191 192	0.961880	0.4860	0.5140	0.22	0.12
Mod11	189	189 190	0.920132	0.7515	0.2485	0.55	0.41
Mod12	203	203 204	0.995369	0.0798	0.9202	1.28	0.78

Figure S2. Occupied and virtual crystal orbitals involved in the major contribution(s) to the S1 state of all COF-1 monolayers as computed with TD-DFPT implemented in CP2K with truncated PBE0 functional.

		Occupied		Virtual
Mod0	205		206	
Mod1	281		283	
Mod2	259		262	and a second sec
	260		262	

Mod12	215		218	
	217	A Seas COLOR	218	

Figure S3. Occupied and virtual crystal orbitals involved in the major contribution(s) to the S1 state of all COF-2 monolayers as computed with TD-DFPT implemented in CP2K with truncated PBE0 functional.

		Occupied		Virtual
Mod0	191		192	
Mod1	203		204	
Mod2	215		216	And and a second s
Mod3	227		228	
Mod4	227		228	
Mod5	255		256	And the second s
	255		257	
Mod6	223		224	
Mod7	239		240	
Mod8	239		240	

Mod9	191	192	
Mod10	191	192	
Mod11	189	190	
Mod12	203	204	

Section 5. HOMO and LUMO energies of the constituent D and A monomers.

Table S5. PBE0/def2svp HOMO and LUMO orbital energies of the Py and Tz isolated monomers extracted from Mod0-to-Mod12 COF-1 monolayers. The local LUMO-HOMO energy differences evaluated as $L_{Py} - H_{Py}$, and $L_{Tz} - H_{Tz}$ are also provided. The CT LUMO-HOMO energy differences evaluated as $L_{Py} - H_{Tz}$ and $L_{Tz} - H_{Py}$ are also provided. Finally, the difference between the smallest local and smallest CT orbital gap is provided.

	H _{Py}	L _{Py}	L _{Py} –H _{Py}	H _{Tz}	L _{Tz}	$L_{Tz}-H_{Tz} \\$	$L_{Tz} - H_{Py}$	$L_{Py}-H_{Tz}$	local – CT
Mod0	-5.46	-2.16	3.30	-6.32	-2.81	3.51	2.65	4.16	0.65
Mod1	-5.13	-2.15	2.98	-7.13	-3.48	3.65	1.65	4.98	1.33
Mod2	-6.52	-3.38	3.14	-6.61	-2.43	4.17	4.08	3.23	-0.09
Mod3	-5.81	-2.48	3.33	-6.71	-2.14	4.57	3.67	4.23	-0.34
Mod4	-6.02	-2.51	3.51	-6.64	-2.55	4.09	3.47	4.13	0.04
Mod5	-5.97	-2.62	3.35	-6.67	-2.85	3.83	3.12	4.05	0.23
Mod6	-5.56	-2.07	3.49	-6.32	-2.80	3.52	2.75	4.25	0.73
Mod7	-5.46	-2.13	3.33	-6.85	-1.85	5.01	3.61	4.72	-0.28
Mod8	-5.73	-1.98	3.75	-6.34	-2.78	3.55	2.95	4.36	0.61
Mod9	-5.80	-2.74	3.06	-6.32	-2.81	3.51	2.99	3.58	0.07
Mod10	-5.46	-2.16	3.29	-6.78	-3.37	3.41	2.08	4.62	1.21
Mod11	-5.46	-2.16	3.29	-6.35	-3.75	2.60	1.70	4.19	0.90
Mod12	-5.85	-2.43	3.42	-5.79	-2.15	3.64	3.70	3.37	0.06

Table S6. PBE0/def2svp HOMO and LUMO orbital energies of the TTF and Py isolated monomers extracted from Mod0-to-Mod12 COF-2 monolayers. The local LUMO-HOMO energy differences evaluated as L TFF – H TTF, and L Py – H Py are also provided. The CT LUMO-HOMO energy differences evaluated as L Py – H TTF and L TTF – H Py are also provided. Finally, the difference between the smallest local and smallest CT orbital gap is provided.

	H _{TTF}	L _{TTF}	L _{TTF} –H _{TTF}	H _{Py}	L _{Py}	L _{Py} –H _{Py}	$L_{Py} - H_{TTF}$	L _{TTF} –H _{Py}	local – CT
Mod0	-5.01	-2.35	2.66	-5.38	-2.13	3.25	2.88	3.03	-0.22
Mod1	-5.22	-2.43	2.79	-5.08	-2.06	3.02	3.16	2.65	0.14
Mod2	-4.88	-2.26	2.62	-5.41	-2.14	3.28	2.74	3.15	-0.12
Mod3	-5.23	-2.78	2.45	-5.24	-2.06	3.19	3.17	2.47	-0.02
Mod4	-5.15	-1.92	3.23	-5.70	-2.44	3.26	2.69	3.79	0.53
Mod5	-5.59	-3.52	2.07	-5.41	-2.13	3.28	3.46	1.90	0.18
Mod6	-5.23	-2.45	2.78	-6.46	-3.32	3.14	1.91	4.01	0.87
Mod7	-5.00	-2.44	2.57	-5.43	-2.19	3.24	2.82	2.99	-0.25
Mod8	-5.77	-3.10	2.68	-5.93	-2.68	3.25	3.09	2.83	-0.15
Mod9	-5.22	-2.37	2.85	-5.77	-2.73	3.04	2.49	3.40	0.36
Mod10	-5.64	-3.32	2.32	-5.43	-2.14	3.29	3.49	2.12	0.20
Mod11	-6.52	-2.21	4.31	-5.74	-2.71	3.03	3.81	3.53	-0.50
Mod12	-4.64	-1.51	3.13	-5.79	-2.37	3.42	2.27	4.29	0.86

Section 6. CT values of the isolated D-A pairs at PBE0 and ω B97XD level.

Table S7. CT values of COF-1 evaluated at (a) the 2D monolayers with PBE0, (b) the isolated D-A pairs in gas phase at the 2D geometry with PBE0, (c) the isolated D-A pairs in gas phase at the 2D geometry with ω B97XD, (d) the isolated D-A pairs in gas phase at the ω B97XD optimized ground state geometry with ω B97XD, and (e) the isolated D-A pairs in gas phase at the ω B97XD optimized excited state geometry with ω B97XD.

Column	(a)	(b)	(c)	(d)	(e)	
Environment:	2D	Gas phase (GP)				
DFT functional:	PBE0		wB972	(D		
Geometry:	2D (GS	S)		GP(GS)	GP(ES)	
Mod0	0.53	0.74	0.30	0.28	0.79	
Mod1	0.77	0.82	0.71	0.61	0.59	
Mod2	0.39	0.64	0.42	0.26	0.37	
Mod3	0.21	0.18	0.17	0.17	0.15	
Mod4	0.35	0.48	0.29	0.26	0.18	
Mod5	0.36	0.50	0.35	0.23	0.28	
Mod6	0.49	0.75	0.33	0.41	0.79	
Mod7	0.27	0.25	0.22	0.22	0.17	
Mod8	0.33	0.78	0.27	0.49	0.60	
Mod9	0.34	0.50	0.37	0.39	0.27	
Mod10	0.64	0.83	0.47	0.44	0.80	
Mod11	0.77	0.87	0.38	0.47	*	
Mod12	0.37	0.63	0.32	0.21	0.14	

*the ES could not be optimized

Table S8. CT values of COF-2 evaluated at (a) the 2D monolayers with PBE0, (b) the isolated D-A pairs in gas phase at the 2D geometry with PBE0, (c) the isolated D-A pairs in gas phase at the 2D geometry with ω B97XD, (d) the isolated D-A pairs in gas phase at the ω B97XD optimized ground state geometry with ω B97XD, and (e) the isolated D-A pairs in gas phase at the ω B97XD optimized excited state geometry with ω B97XD.

	(a)	(b)	(c)	(d)	(e)
Environment:	2D	Gas phase (GP)			
DFT functional:	PBE0		wB97X	KD	
Geometry:	2D (GS	5)		GP(GS)	GP(ES)
Mod0	0,62	0,58	0,57	0,57	0,53
Mod1	0,62	0,52	0,55	0,54	0,57
Mod2	0,69	0,68	0,70	0,53	0,60
Mod3	0,62	0,59	0,57	0,59	0,57
Mod4	0,81	0,84	0,53	0,60	0,56
Mod5	0,63	0,68	0,69	0,65	0,86
Mod6	0,90	0,96	0,66	0,55	0,55
Mod7	0,62	0,65	0,62	0,54	0,57
Mod8	0,58	0,55	0,52	0,52	0,53
Mod9	0,73	0,75	0,57	0,54	0,53
Mod10	0,52	0,58	0,54	0,52	0,58
Mod11	0,27	0,22	0,22	0,22	0,19
Mod12	0,92	0,96	0,62	0,61	0,58

Section 7. Orbital contributions to the optimized S₁ state of the Mod0, Mod6 and Mod10 of COF-1 D-A dimers.

Figure S4. Major orbital contributions to the S_1 state of the D-A pair of Mod0 of COF-1 at the ground state geometry (GS opt) and at the optimized S_1 excited state geometry (ES opt).

Mod0		
Geometry	GS opt	ES opt
Major contributions to S1	$242 \rightarrow 244 \ 0.48$ $243 \rightarrow 245 - 0.37$	$243 \rightarrow 244 \ 0.48$ $242 \rightarrow 244 \ 0.36$
MO 242		
MO 243		
MO 244		
MO 245		

Mod6		
Geometry	GS opt	ES opt
Major contribution s to S1	$258 \rightarrow 260 \ 0.42$ $257 \rightarrow 260 \ 0.34$	$259 \rightarrow 260 - 0.52$ $258 \rightarrow 260 \ 0.30$
MO 257	LES BERESSE	And the synthesis and the second seco
MO 258	A JACK A REAL REAL REAL REAL REAL REAL REAL RE	And the second s
MO 259	Later and the second se	A TOTAL AND AND A TOTAL AND A
MO 260	A REAL PROPERTY OF	Later Hard

Figure S5. Major orbital contributions to the S_1 state of the D-A pair of Mod6 of COF-1 at the ground state geometry (GS opt) and at the optimized S_1 excited state geometry (ES opt).

Mod10		
Geometry	GS opt	ES opt
Maior	241→ 244 0.44	243 → 244 -0.43
contribution s to S1	243 → 246 0.25	242 → 244 0.41
MO 241		A Standarder
MO 242	State of the set of th	
MO 243		
MO 244		
MO 246	- Seguration and the second and the	

Figure S6. Major orbital contributions to the S_1 state of the D-A pair of Mod10 of COF-1 at the ground state geometry (GS opt) and at the optimized S_1 excited state geometry (ES opt).

Section 8. Band structure of the 26 monolayers.

×

Ĺ

Ý

В

G 0

Figure S8. Band structures of COF-2 monolayers computed at PBE0 level.

Section 9. Correlation between the effective mass values and the dihedral and orbital energy differences of the D and A building blocks

Figure S9. *Left:* correlation between the m_h^* values and the dihedral and HOMO energy difference (given in eV) between the D and A building blocks. *Right:* correlation between the m_e^* values and the dihedral and LUMO energy difference (given in eV) between the D and A building blocks. The dihedral angle taken is depicted in red in the figure below.

