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S1. 1H NMR and Mass Spectra 

 

Fig. S1. 1H NMR spectrum (500 MHz, CDCl3, 24.9 °C (298 K)) of anthracene-2-

carbaldehyde 

 

Fig. S2. 1H NMR spectrum (500 MHz, CDCl3, 24.9 °C (298 K)) of ferrocenecarbaldehyde 

oxime 
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Fig. S3. 1H NMR spectrum (500 MHz, CDCl3, 24.9 °C (298 K)) of ferrocenemethylamine 

 

 

Fig. S4. 1H NMR spectrum (500 MHz, CD3CN, 24.9 °C (298 K)) of A1 
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Fig. S5. High-resolution field desorption mass spectrum of A1. The major peak at m/z = 

406.1249 corresponds to [C₂₆H₂₄FeN]⁺ (calcd: 406.1252), with a mass error of 0.74 ppm. 

 

 

Fig. S6. 1H NMR spectrum (500 MHz, CD3CN, 24.9 °C (298 K)) of the PR1 
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Fig. S7. High-resolution field desorption mass spectrum of PR1. The major peak at m/z = 

854.3337 corresponds to [C50H56FeNO8]⁺ (calcd: 854.3350), with a mass error of 1.5 ppm. 

 

 

Fig. S8. ESI- mass spectrum of of PR1. (a) The main peak at m/z = 144.9642 corresponds to [PF6
-] 

(calcd: 144.9642), with a mass error of 0.07 ppm. (b) The spectrum shows no signal corresponding to 

Cl⁻, indicating its absence. 

 

 



  

7 
 

 

Fig. S9. 1H NMR spectra (500 MHz, 24.9 °C (298 K), CD₃CN) in the chemical shift range of 

3.5–4.5 ppm for (a) A1, (b) PR1, and (c) DB24C8. 

 

Table S1. Summary of 1H NMR (500 MHz, 24.9 °C (298 K), CD₃CN) chemical shift values 

for A1, DB24C8, and PR1 in the range of 3.5–4.5 ppm. 

Compound 
Host (ppm) Thread-Fc (ppm) 

Hb Hc Hd H1 H2, H3 H4, H5 

A1 - - - 4.19 4.23, 4.37 4.25, 3.98 

DB24C8 4.12 3.83 3.74 - - - 

PR1 4.11 3.85 3.65 4.22 4.31, 4.51 4.33, 3.97 
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Fig. S10. 1H NMR spectra (500 MHz, 24.9 °C (298 K), CD₃CN) in the chemical shift range of 

6.5–8.6 ppm for (a) A1, (b) PR1, and (c) DB24C8. 

 

 

 

Table S2. Summary of 1H NMR (500 MHz, 24.9 °C (298 K), CD₃CN) chemical shift values for 

A1, DB24C8, and PR1 in the range of 6.5–8.6 ppm 

Compound 
Host (ppm) Thread-anthryl (ppm) 

Ha H6 H7 H8, H9, H10 H11 

A1 - 7.48, 7.50 7.52-7.55 8.06-8.11 8.54 

DB24C8 6.90 - - - - 

PR1 6.96 7.50, 7.53 7.53-7.56 8.08-8.17 8.57 
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Fig. S11. 1H NMR spectra (500 MHz, 24.9 °C (298 K)) of A1, PR1 and DB24C8 in 

CDCl3:acetone-d6 = 7:3 (vol/vol). The complexation ratio was estimated from the integration 

of the aromatic peaks of DB24C8 at 6.83–6.99 ppm (complexed) and 6.73–6.82 ppm 

(uncomplexed). 
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S2. Crystallographic Data  

 

Fig. S12. (a) ORTEP drawing of PR1 at –173.15 °C (100 K), showing 30% probability 

displacement ellipsoids. (b) Photos of the crystal, displaying the Miller indices of exposed 

surfaces. (c) Molecular alignment within the unit cell viewed along the a, b, and c 

crystallographic axes. 
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Fig. S13. Temperature-dependent unit cell parameters and volume of PR1 obtained from 

single-crystal X-ray crystallography 
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Table S3. Crystal data and details of structure refinement of PR1 at different temperatures. 

Temperature/ °C  
(K) 

–173 
(100.01(10)) 

–123 
(150.00(10)) 

–73 
(200.00(10)) 

Molecular formula C50H56F6FeNO8P C50H56F6FeNO8P C50H56F6FeNO8P 

Molecular weight 999.77 999.77 999.77 

Crystal system Monoclinic Monoclinic Monoclinic 

Space group P21/c P21/c P21/c 

a/ Å 11.3429(10)  11.3744(3)  11.4124(3)  

b/ Å 29.6360(3)  29.6668(7)  29.6943(7)  

c/ Å 14.0412(10)  14.0815(3)  14.1411(2)  

α/ deg 90 90 90  

β/ deg 98.3000(10) 98.170(2) 98.114(2)  

γ/ deg 90 90 90  

Volume/ Å3 4667.14(7)  4703.5(2)  4744.18(17)  

Z 4 4 4 

μ(MoΚα)/ mm-1 3.600 3.572 3.542 

F(000) 2088.0 2088.0 2088.0 

Density/ g cm-3 1.423  1.412  1.400  

Crystal size/ mm 0.13 x 0.03 x 0.02  0.12 x 0.07 x 0.03  0.08 x 0.04 x 0.03  

Reflections collected 51830 30032 38027 

Independent reflections 8307 8354 8407 

R  0.0384 0.0564 0.0576 

Rw  0.0998 0.1466 0.1477 

GOF 1.070 1.041 1.030 
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Table S4. Crystal data and details of structure refinement of PR1 at different temperatures. 

Temperature/ °C  
(K) 

–23 
(250.00(10)) 

24 
(297.00(10)) 

47 
(320.00(10)) 

Molecular formula C50H56F6FeNO8P C50H56F6FeNO8P C50H56F6FeNO8P 

Molecular weight 999.77 999.77 999.77 

Crystal system Monoclinic Monoclinic Monoclinic 

Space group P21/c P21/c P21/c 

a/ Å 11.4540(4) 11.5093(6)  11.5366(6) 

b/ Å 29.7253(7) 29.7566(13)  29.8004(11) 

c/ Å 14.1940(3) 14.2524(4) 14.2802(5) 

α/ deg 90 90° 90° 

β/ deg 98.014(3) 98.146(2)° 98.105(4) 

γ/ deg 90 90° 90° 

Volume/ Å3 4785.5(2) 4831.9(4)  4860.4(3) 

Z 4 4 4 

μ(MoΚα)/ mm-1 3.511 3.477 3.457 

F(000) 2088.0 2088.0 2088.0 

Density/ g cm-3 1.388  1.374  1.366 

Crystal size/ mm 0.12 x 0.07 x 0.03  0.08 x 0.04 x 0.03 0.08 x 0.04 x 0.03 

Reflections collected 31389 38291 32262 

Independent reflections 8503 8557 8645 

R 0.0673 0.0786 0.0806 

Rw 0.1727 0.2062 0.2075 

GOF 1.041 0.990 1.009 

 
Due to substantial deterioration in data quality above 77 °C (350 K), detailed structural analysis 
is based on the crystallographic data obtained below 47 °C (320 K). 
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Fig. S14. Polarized optical micrographs of a PR1 crystal at (a) 25 °C, (b) 100 °C, (c) 200 °C, 

and (d) 223 °C. 

 

Table S5. Retardation, thickness and average birefringence of PR1 

Crystal R (nm) d (μm) Δn Avg. Δn 

#1 

539.24 8.50 0.063 

0.063 496.84 7.92 0.063 

465.54 7.37 0.063 

#2 

805.51 12.26 0.066 

0.065 768.86 11.90 0.065 

734.18 11.47 0.064 

#3 

298.38 4.37 0.068 

0.068 311.24 4.55 0.068 

326.16 4.75 0.069 
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S3. Hirshfeld Surface Analysis 

 

Fig. S15. (a) Hirshfeld surface (HS) mapped over dnorm for the axle molecule in PR1 at            –

173 °C (100 K). (b) 2D fingerprint plot of overall intermolecular interactions. (c–h) 2D 

fingerprint plots of specific interaction types for the axle molecule in PR1 at  –173 °C. 

 
Fig. S16. Percentage contributions of intermolecular interactions in PR1 at –173 °C (100 K), 

calculated from HS analysis: (a) interactions between all atoms within the HS and an external 

atom, and (b) interactions between an internal atom and all surrounding atoms outside the HS. 
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Fig. S17. (a) HS mapped over dnorm for the axle molecule in PR1 at  47 °C (320 K). (b) 2D 

fingerprint plot of overall intermolecular interactions. (c–h) 2D fingerprint plots of specific 

interaction types for the axle molecule in PR1 at 47 °C. 

 
Fig. S18. Percentage contributions of intermolecular interactions in PR1 at 47 °C (320 K), 

calculated from HS analysis: (a) interactions between all atoms within the HS and an external 

atom, and (b) interactions between an internal atom and all surrounding atoms outside the HS. 
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Fig. S19. (a) HS plotted over dnorm for PR1 under –173 °C (100 K). 2D fingerprint plot for (b) 

overall interactions and (c-g) individual interactions in PR1 under –173 °C. 

 
Fig. S20. Percentage contributions of intermolecular interactions in PR1 at –173 °C (100 K) 

based on HS analysis: (a) interactions between all atoms within the HS and a single external 

atom, and (b) interactions between a single internal atom and all surrounding atoms outside the 

HS. 
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Fig. S21. (a) HS plotted over dnorm for PR1 under 47 °C (320 K). 2D fingerprint plot for (b) 

overall interactions and (c-g) individual interactions in PR1 under 46.85 °C. 

 
Fig. S22. Percentage contributions of intermolecular interactions in PR1 at 47 °C (320 K) based 

on HS analysis: (a) interactions between all atoms within the HS and a single external atom, 

and (b) interactions between a single internal atom and all surrounding atoms outside the HS. 
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Fig. S23. Graphical representation of voids in the crystal packing of PR1 at (a) –173 °C and 

(b) 47 °C. 
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S6. Film Preparation and Characterization 

Table S6. Concentration of dopants in PBMA films 

 PBMA Axle Ring 
Complex 

or compound 
Solvent 

Ferrocene 
(7 mol%) 

30 mg 

(0.211 mmol) 
— — 0.016 mmol 

CHCl3 

(500 μL) 

A1-PBMA 

(7 mol%) 

30 mg 

(0.211 mmol) 

8.816 mg 

(0.016 mmol) 
— 0.016 mmol 

CHCl3 and acetone =1:1 

(500 μL) 

PR1-PBMA 

(7 mol%) 

30 mg 

(0.211 mmol) 

8.816 mg 

(0.016 mmol) 

7.168 mg 

(0.016 mmol) 
0.016 mmol 

CHCl3 and acetone =1:1 

(500 μL) 

Cr.PR1- 
PBMA 

(7 mol %) 

9.38 mg 

(0.066 mmol) 
— — 

5 mg 

(0.005 mmol) 

Ether 

(300 μL) 

Cr.PR2- 

PBMA 
(7 mol %) 

16.43 mg 

(0.116 mmol) 
— — 

8 mg 

(0.0088 mmol) 

Ether 

(400 μL) 
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Fig. S24. Optical micrographs of PR1-PBMA at different magnifications under (left) non-

polarized and (right) polarized light. 
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Fig. S25. Optical micrographs of A1-PBMA at different magnifications under (left) non-

polarized and (right) polarized light. 
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Fig. S26. Optical micrographs of Cr.PR1-PBMA at different magnifications under (left) non-

polarized and (right) polarized light. 
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Fig. S27. Optical micrographs of Cr.PR2-PBMA at different magnifications under (left) non-

polarized and (right) polarized light. 
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Fig. S28. (a) SEM image of PR1-PBMA. (b) EDX elemental mapping of PR1-PBMA showing 

distributions of (b1) Fe, (b2) P, and (b3) F. 
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Fig. S29. (a) SEM image of A1-PBMA. (b) EDX elemental mapping of A1-PBMA showing 

distributions of (b1) Fe, (b2) P, and (b3) F. 
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Fig. S30. (a) SEM image of Cr.PR1-PBMA. (b) EDX elemental mapping of Cr.PR1-PBMA 

showing distributions of (b1) Fe, (b2) P, and (b3) F. 
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Fig. S31. (a) SEM image of Cr.PR2-PBMA. (b) EDX elemental mapping of Cr.PR2-PBMA 

showing distributions of (b1) Fe, (b2) P, and (b3) F. 
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Fig. S32. XRD patterns of PBMA films 
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S5. Photoluminescence properties 

 

Fig. S33. Photoluminescence spectra of A1 (13 ppm in acetone) with varying DB24C8 ratios 

 

Table S7. Photoluminescence properties of A1 with varying DB24C8 ratios in acetone. 

Axle:Ring 
λUV-VIS-MAX 

(nm) 

λPL-VIS-MAX 

(nm) 

Stokes Shift 

(nm) 
PLQYa 

A1 only 358 432 74 0.84% 

1:1 357.5 432 75.5 0.75% 

1:5 357 432 75 0.67% 
a Quinine solution: 10-5 M in 0.05 M H2SO4(aq) solution 

Sample solvent: acetone 

Φx = Φstd(Ix/Istd)(Astd/Ax)(nx/nstd)2, nx = nacetone = 1.355, nstd = 1.333 
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Fig. S34. (a) Photoluminescence spectra of PR1 in CH₂Cl₂ (1 × 10⁻⁴ M) upon excitation at 360 

nm after different irradiation times. (b) Photographs of PR1 solutions in CH₂Cl₂ after various 

irradiation durations, with blank solvent shown for comparison (left to right). (c) Color-filled 

contour plot of fluorescence emission spectra upon excitation from 310 to 400 nm at 10 nm 

intervals. 
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S6. Photothermal Conversion 

The photothermal conversion efficiency (η) was estimated from the time-dependent 

temperature profiles (Fig. 6) and corresponding linear fits in the temperature decay region (Fig. 

S35), using the following equation: η = [hs(ΔTSample-PBMA – ΔTPBMA)]/I(1-10–A) with the 

relationship: τ = mc/hs, where h is the heat transfer coefficient, s is the surface area of the sample, 

ΔTSample-PBMA and TPBMA are the steady-state temperature change of the sample and the PBMA 

blank, respectively. I represents the laser power, A is the absorbance at the laser wavelength, τ 

is the time constant obtained from the linear fitting of the cooling curve, m is the mass of the 

sample, and c is the specific heat capacity of PBMA (1669 J kg⁻¹ K⁻¹). The estimated values 

are summarized in Table 1.  

 

Fig. S35. Plots of the negative natural logarithm of the temperature driving force during the 

cooling stage for (a) Cr.PR1-PBMA, (b) PR1-PBMA, and (c) A1-PBMA. 
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Fig. S36. UV-Vis spectra of PBMA films. 

 

 

Fig. S37. DMA profiles of (a) PR1-PBMA and (b) A1-PBMA, showing loss modulus (right) 

and tan δ (left). 
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S7. Photoinduced Deformation and Mechanical Output 

 

 

Fig. S38. Deformation behavior of PR1 under 445 nm laser irradiation (40 mW cm⁻²) and 375 

nm laser irradiation (28 mW cm⁻²). 
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Fig. S39. Deformation behavior of PR1-PBMA under 445 nm laser irradiation (40 mW cm⁻²) 

and 375 nm laser irradiation (28 mW cm⁻²). 
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Fig. S40. Deformation behavior of A1-PBMA under 445 nm laser irradiation (40 mW cm⁻²) 

and 375 nm laser irradiation (28 mW cm⁻²). 
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Fig. S41. Time dependence of the displacement of PR1 induced by 445-nm laser (50 mW cm⁻²). 

(a) Crystal expansion with laser on, (b) contraction with laser off, and (c) repeated relative area 

change.  
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Fig. S42. Time-dependent force measurements under laser irradiation: (a) force response of 

different materials under 445 nm laser (220 mW cm⁻²), (b) under 375 nm laser (15 mW cm⁻²), 

(c) force response of a PR1 crystal under 445 nm laser, (d) under 375 nm laser, and (e) force 

response of PR1 under 445 nm laser at a power of 120 mW cm⁻² with an on/off cycle of 8s/8s. 
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Fig. S43. Time-dependent force measurements under laser irradiation: (a) PR1-PBMA and (b) 

A1-PBMA under 445 nm laser, (c) PR1-PBMA and (d) A1-PBMA under 375 nm laser. (e) 

Force response of PR1-PBMA under 445 nm laser (157 mW cm⁻²) with an on/off cycle of 

15s/15s. 


