Electronic Supplementary Information for

Intrinsic valley polarization and manipulation by interfacial coupling in two-dimensional GdIBr/In₂Se₃ van der Waals multiferroic heterojunction

Xu Zhang, Yadong Zhu*, Baozeng Zhou*, and Xiaocha Wang*

Tianjin Key Laboratory of Film Electronic & Communicate devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

*Corresponding Authors

yadong_zhu@163.com (Yadong Zhu)

baozeng@tju.edu.cn (Baozeng Zhou)

wangxc@email.tjut.edu.cn (Xiaocha Wang)

Fig. S1 The band structure of GdIBr (a) without and (b) with SOC. The band structure of In₂Se₃ (c) without and (d) with SOC. With a fixed lattice constant of 4.06 Å, the band structure of GdIBr is shown in (e) without and (f) with SOC. With a fixed lattice constant of 4.06 Å, the band structure of In₂Se₃ is shown in (g) without and (h) with SOC.

Table S1. In model-1,3,5,7 \downarrow and model-2,4,6,8 \uparrow , the total energy (eV) of the GdIBr/In₂Se₃ heterojunction, and the energies of the ML GdIBr and In₂Se₃, respectively.

	E_{GdIBr/In_2Se_3}	E_{GdIBr}	$E_{In_2Se_3}$
model-1↓	-42.136161	-21.670765	-18.481858
model-2↑	-42.083700	/	/
model-3↓	-42.101599	/	/
model-4↑	-42.064838	/	/
model-5↓	-42.127538	/	/
model-6↑	-42.076853	/	/
model-7↓	-42.130557		
model-8↑	-42.079054		

Fig. S2 The magnetic moment and heat capacity as functions of temperature for ML

CrI₃.

Fig. S3 Band structure and enlarged plots near the Fermi level when −4% and −6% compressive strains are applied to model-2↑.

Fig. S4 The orbital resolved MAE of (a) Gd-*d* and (b) Se-*p* for model- $2\uparrow$ under no strain, -4%, and -6% strain.

	Gd-d (µeV)	Se- <i>p</i> (μeV)	Work function (eV)	Bader charge (eV)
0	-509.8	-13.6	4.005	0.022
-4%	-318.4	-17.6	4.009	0.012
-6%	-195.2	-10.4	4.010	0.010

Table S2. The orbital resolved MAE of Gd-*d* and Se-*p*, the work function and bader charge of model-2↑ under no strain, -4%, and -6% strain.