Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Blue fluorescent emitter based on HLCT and AIE: acidichromism behaviors and

narrow-band emission in OLEDs application

Haoyu Ma^a, Xiaoling Niu^{a, *1}, Wenlong Qu^a, Zhen Feng^b, Tiantian Ma^b, Yongliang

Liu^a, Shengbo Zhu^{a, *}

^a School of Materials and Chemical Engineering, Shaanxi Key Laboratory of Photoelectric

Functional Materials and Devices, Xi'an Technological University, Xi'an, 710021, China

^bShaanxi Light Optoelectronics Material Co., Ltd., Xi'an, 710065, China

*Corresponding authors. E-mail addresses: niux10123@163.com

¹¹ * Corresponding author. Tel.: +86 2986173324; fax: +86 2986173324. E-mail address: niuxl0123@163.com*(X Niu)

^{*}Corresponding author.

E-mail addresses: zhushengbo@xatu.edu.cn (S. Zhu)

Contents

- 1. General Information
- 2. Synthesis details
- 2.1 Synthesis routes

Scheme 1 Synthesis route of CF₃-PPI-TPE

2.2 Synthesis and characterization

- 3. HRMS and NMR
- 4. Supplementary

figures

1. General information

All chemicals and solvents were procured from Aladdin Company and utilized without additional purification unless otherwise specified.

The ¹H NMR and ¹³C NMR spectra were obtained using a Bruker AVANCE-600 MHz instrument, with tetramethylsilane (TMS) employed as the internal reference standard. HRMS was conducted using a Bruker maXis mass spectrometer. Powder Xray diffraction (PXRD) patterns were measured with a Bruker D2 PHASER Gen2 diffractometer. Fourier transform-infrared (FT-IR) spectra was conducted using a Nicolet[™] IS50 FTIR. The scanning range was from 4000 to 400 cm⁻¹ with a resolution of 2 cm⁻¹. Differential scanning calorimetry (DSC) measurements were acquired using a METTLER-TOLEDO DSC3+ instrument. The thermogravimetric analysis (TGA) measurements were measured with a METTLER-TOLEDO TGA/DSC1 * instrument. Cyclic voltammetry (CV) was performed using an AUTOLAB PGSTAT 302 N Electrochemical Analyzer, which employed a three-electrode configuration consisting of a glassy carbon electrode as the working electrode, a platinum wire as the auxiliary electrode, and an Ag/AgCl electrode as the pseudo-reference electrode. The measurements were conducted in dichloromethane containing tetrabutylammonium hexafluorophosphate (Bu4NPF6) at a concentration of 0.1 M. The theoretical calculations utilizing density functional theory (DFT) and time-dependent DFT (TD-DFT) were conducted using the Gaussian 09 software at the B3LYP/6-31G(d) level. All EL performance data were tested by Shaanxi Lighte Optoelectronics Material Co., Ltd. (LTOM)

2. Synthesis details

2.1 Synthesis route

Scheme S1 Synthesis route of CF₃-PPI-TPE

2.2 Synthesis and characterization

The compounds of CF_3 -PPI-TPE were obtained by Debus-Radziszewski reaction. The synthetic routes of these compounds were shown in Scheme S1.

Synthesis of 1-(4-(trifluoromethyl)phenyl)-2-(3-(1,2,2-triphenylvinyl)phenyl)-1Hphenanthro[9,10-d]imidazole (CF₃-PPI-TPE)

Phenanthrene-9,10-dione (0.57 g, 2.69 mmol), 4-(1,2,2-triphenylethenyl) benzalde hyde (1 g, 2.69 mmol) , 4-(trifluoromethyl) aniline (2.21 g,13.46 mmol, 1.7 ml) and CH₃COONH₄ (1 g, 13 mmol) were dissolved in 40 mL of CH₃COOH. Th e mixture was stirred and refluxed for 1 hour at 120 °C under nitrogen atmos phere. Upon completion of the reaction, the mixture was allowed to cool to ro om temperature. After the solvent was evaporated, the residue was purified by silica gel column chromatography employing an ethyl acetate/petroleum ether (EA/PE = 1/4, v/v) gradient as the eluent. The resulting crude product was pou red into a large amount of methanol solution and heated and stirred for 30 mi nutes. It was then filtered to obtain a light green powder (1.78 g, 92.46 % yie lds). ¹H NMR (600 MHz, CDCl₃) δ 8.85 (d, J=8.0 Hz, 1H), 8.77 (d, J=8.4 H z, 1H), 8.70 (d, J=8.3 Hz, 1H), 7.83 (d, J=7.9 Hz, 2H), 7.74 (s, 1H), 7.66 (s, 1H), 7.57 (d, J=8.0 Hz, 2H), 7.53 (s, 1H), 7.30 (t, J=7.7 Hz, 1H), 7.22 (d, J= 8.0 Hz, 2H), 7.14 (s, 1H), 7.11 (t, J=5.6 Hz, 8H), 7.08 (d, J=7.4 Hz, 1H), 7.0 2-6.99 (m, 6H), 6.97 (d, J=7.8 Hz, 2H) (**Figure S1**). ¹³C NMR (101 MHz, C DCl₃) δ 143.5, 143.2, 140.3, 131.5, 131.4, 131.4, 131.2, 128.7, 128.6, 128.3, 1 27.8, 127.6, 126.7, 126.2 (**Figure S2**). HR-MS (ESI, m/z): Found: [M+H] ⁺ 693.2 471, molecular formula C₄₈H₃₁F₃N₂ requires 692.7840. (**Figure S3**). Element analy sis for CHN, Found: C, 82.8, H, 4.3, N, 4.2%; molecular formula C₄₈H₃₁F₃N₂ requires C, 83.2, H, 4.5, N, 4.0% (**Figure S4**). FT-IR spectrum: 3050 cm⁻¹ (Ar -H), 1613 cm⁻¹ (-C=N), 1474 cm⁻¹ (-C=C), 1322 cm⁻¹ (-CN), 1131 cm⁻¹ (-CF), 858, 756, 702 cm⁻¹ (-Ar-CH) (**Figure S5**).

3. HMRS and NMR

Figure S1. ¹H-NMR spectra of CF₃-PPI-TPE in CDCl₃

143.20 143.20 143.20 131.50 131.55 131.15 13

220 215 210 205 200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 f1 (ppm)

Figure S2. ¹³C-NMR spectra of CF₃-PPI-TPE in CDCl₃

Figure S3. HRMS spectra of CF₃-PPI-TPE

Test results						
Detection mode		CHNS mode				
Detection date		250418				
Instrument model	Elemental UNICUBE					
Sample name	N (%)	C (%)	Н (%)	S (%)	O (%)	
CF ₃ -PPI-TPE	4.167	82.84	4.281	0.000	/	

Figure S4. CHN elemental analysis of CF_3 -PPI-TPE

Figure S5. FT-IR spectrum of CF_3 -PPI-TPE

S _n	Hole 1	Particle	T _n	Hole	Particle
S ₁	3.3958 e	V V	T ₁	2.4671	eV
S_2	3.5556 e	V	T ₂	2.7550	eV
S ₃	3.6439 e	V	T ₃	3.1856	eV
S4	3.6464 e	V V	T ₄	3.3222	eV
\mathbf{S}_5	3.7021 e	V	T ₅	3.4114	eV
S ₆	3.7147 e	V	T ₆	3.4955	eV
S ₇	3.7237 e	V	T ₇	3.5199	eV
S_8	3.7685 e	V	T ₈	3.5637	eV

4. Supplementary figures

Figure S6. The natural transition orbitals (NTOs) of the singlet and triplet excited states for CF_3 -PPI-TPE

Figure S7. (a) Protonated PPI moiety with CF_3COOH . (b) The frontier molecular orbitals of the

unprotonated and protonated of CF₃-PPI-TPE

Figure S8. EL spectrum CIE coordinates of Device I, Device II and Device III.

Figure S9. The external quantum efficiency-luminance plots of Device I, Device II

and Device III.

Figure S10. Current efficiency versus luminance curves of Device I, Device II and

Device III.

Figure S11. Power efficiency versus luminance curves of Device I, Device II and

Device III

Figure S12. Capacitor Voltage Curves of Device I, Device II and Device III.

Figure S13. Luminance versus current density (symbol) and the fitted curve plot (line).

The Lippert-Mataga equation:

$$hc(v_a - v_f) = hc(v_a^0 - v_f^0) - \frac{2(\mu_e - \mu_g)^2}{a^3} f(\varepsilon \cdot n)$$
 (1)

Among them, f is the orientational polarizability of the solvent. $v_a^0 - v_f^0$ corresponds to the Stokes shifts when f is zero. μ_e is the dipole moment of the solute molecule in the excited state. μ_g is the dipole moment of the solute molecule in the ground state. a is the solvent Onsager cavity radius, and ε and n are the solvent dielectric and the solvent refractive index, respectively. k is the slope of the $\Delta v - \Delta f$ diagram, h is Planck's constant, c is the speed of light, M is the molar mass of the solute molecule, N is Avogadro's constant, and d is the solute molecule density (usually taken as 1 g/cm³). μ_e and a can be calculated respectively as follows:

$$a = \sqrt[3]{\frac{3M}{4\pi Nd}}$$
(2)

$$\left(\mu_e - \mu_g\right) = \sqrt{\frac{khca^3}{2}} \qquad (3)$$

Table S1 Detailed absorption and emission peak positions of CF₃-PPI-TPE in different solvents.

				CF ₃ -PPI-TPE		
Solvents	3	n	f(ɛ,n)	λ _a (nm)	λ _f (nm)	$v_{a}v_{f}$ (cm ⁻¹)
Toluene	2.38	1.494	0.014	342.5	415	5100.69
Dioxane	2.21	1.422	0.021	345.2	423	5328.05
Chloroform (CHCl ₃)	4.81	1.443	0.149	344.5	432	5879.43
Ethyl ether	4.43	1.352	0.167	347.0	443	6245.08
Ethyl acetane (EA)	6.02	1.372	0.200	345.3	479	8083.49
Tetrahydrofuran (THF)	7.58	1.407	0.210	346.5	487	8326.15
Methylene chloride (DCM)	8.93	1.424	0.217	343.3	493	8845.07
Dimethyl formamide (DMF)	37	1.427	0.276	342.0	499	9199.69
Acetone	20.7	1.359	0.284	338.5	516	10162.25

Table S2 The energy difference between singlet and triplet excited states corresponding

spin orbital coupling (SOC, cm⁻¹) values for CF₃-PPI-TPE using B3LYP with TZVP

1 •	
basis s	set.

Triplet/single t state	T_1/S_1	T_{2}/S_{1}	T_{3}/S_{1}	T_4/S_1	T_{5}/S_{1}
SOC (cm ⁻¹)	0.33	0.53	0.09	0.63	0.66