Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supplementary Information Halogen Functionalization-Induced Modulation of Ferromagnetism and Electronic Phases in CrXY Monolayers

Xiaolong He a, Dongni Wu a, Yangfang Liao a, and Jing Xie a, *

^a College of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001, China

1. The AIMD simulation results and phonon dispersion of the CrSSeF₂ monolayer

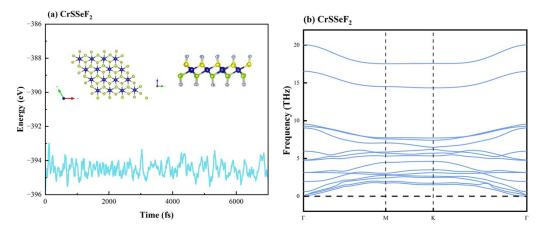


Fig. S1 (a) The variation of temperature as a function of step at temperatures of 300 K for the CrSSeF₂

monolayer. (b) The phonon dispersion of $CrSSeF_2$ monolayer.

2. The schematic plot of PDOS of the CrSSe monolayer

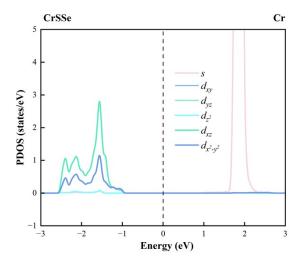


Fig. S2 The PDOS of the CrSSe monolayer.

3. Orbital-resolved magnetic anisotropy energies of the CrSTeBr₂ monolayer

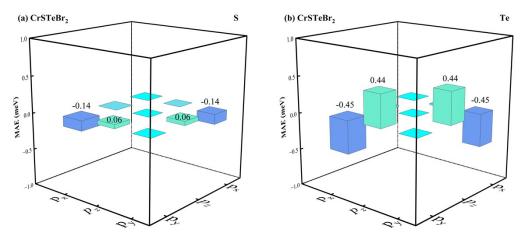


Fig. S3 Orbital-resolved MAE of the CrSTeBr₂ monolayer.

4. The difference of spin-orbital angular momentum matrix elements

Table S1 The matrix differences for p orbitals between magnetization along x [100] and z [001] directions. u^- , o^+ , o^- represent unoccupied spin-down states, occupied spin-up and spin-down states, respectively.

. -	o^+			o ⁻			
u	p_y	p_z	p_{x}	p_y	p_z	p_{x}	
p_y	0	-1	1	0	1	-1	
p_z	-1	0	0	1	0	0	
p_{x}	1	0	0	-1	0	0	

Table S2 The matrix differences for d orbitals between magnetization along x [100] and z [001] directions.

u ⁻ -			$o^{^{+}}$					o^-		
	d_{xy}	d_{yz}	d_{z^2}	d_{xz}	$d_{x^2-y^2}$	d_{xy}	d_{yz}	d_{z^2}	d_{xz}	$d_{x^2-y^2}$
d_{xy}	0	0	0	1	-4	0	0	0	-1	4
d_{yz}	0	0	3	-1	1	0	0	-3	1	-1
d_{z^2}	0	3	0	0	0	0	-3	0	0	0
d_{xz}	1	-1	0	0	0	-1	1	0	0	0
$d_{x^2-y^2}$	-4	1	0	0	0	4	-1	0	0	0

5. The Curie temperature T_C of the CrXY and CrXYT₂ monolayers

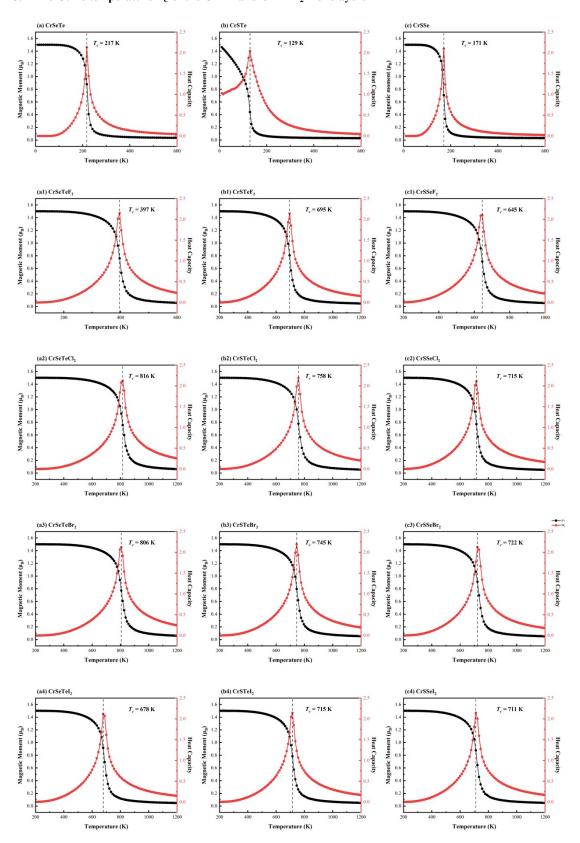


Fig. S4 Temperature dependence of the magnetic moment M and specific heat capacity C_v . The T_C for CrXY and CrXYT₂ monolayers are identified by the peak position in C_v and the transition point of M.