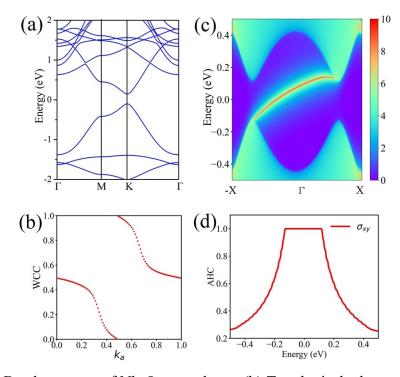
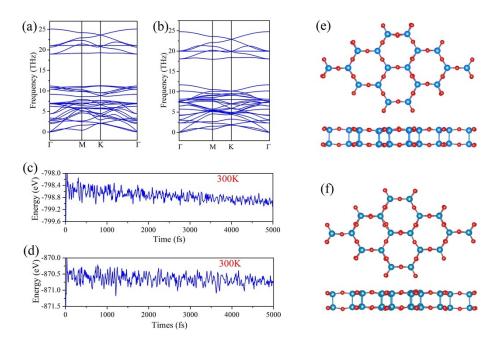
Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025


Quantum spin Hall effect and tunable topological states in M₂O₃ (M

= Nb, Ta) bilayers


Tao Jing,*a Dongmei Liang,a Terchie-Duku Onyx,a Yongchen Xiong,*a Jun Zhang,a Yongjin Hu,a Chenrui Wu,a Zhi He,a Mingsen Deng*b

a Shiyan Key Laboratory of Quantum Information and Precision Optics, School of Optoelectronic Engineering, School of New Energy, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China.

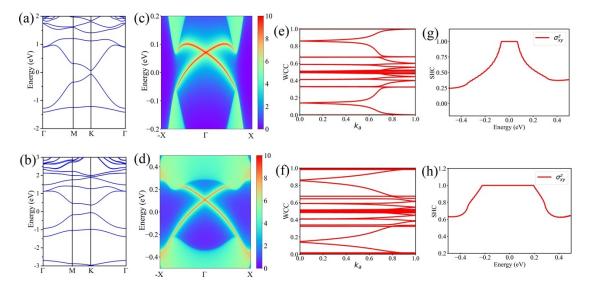

b School of information, Guizhou University of Finance and Economics, Guiyang 550004, People's Republic of China.

Fig. S1 (a) Band structure of Nb₂O₃ monolayer. (b) Topological edge states of Nb₂O₃ monolayer calculated along the (100) direction. (c) Evolution of the summed WCCs for Nb₂O₃ monolayer. (d) AHC with respect to the position of the Fermi level. All results are calculated from the hybrid functional (HSE06) method.

Fig. S2 Phonon dispersion of (a) Nb₂O₃ and (b) Ta₂O₃ bilayers. Total potential energy fluctuations of (c) Nb₂O₃ and (d) Ta₂O₃ bilayers during AIMD simulation at 300 K. The structures of (e) Nb₂O₃ and (f) Ta₂O₃ bilayers after 5 ps of AIMD simulation at 300 K.

Fig. S3 Band structure of (a) Nb₂O₃ and (b) Ta₂O₃ bilayers. Topological edge states of (c) Nb₂O₃ and (d) Ta₂O₃ bilayers calculated along the (100) direction. WCCs of (e) Nb₂O₃ and (f) Ta₂O₃ bilayers. SHC of (g) Nb₂O₃ and (h) Ta₂O₃ bilayers. All results are calculated from the hybrid functional (HSE06) method.

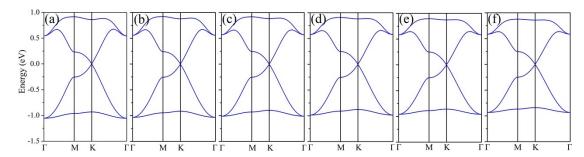


Fig. S4 Band structures of Nb₂O₃ bilayers in the strain range from 1% to 6%.

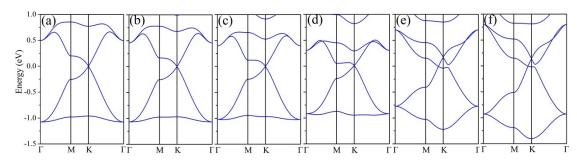


Fig. S5 Band structures of Nb₂O₃ bilayers in the strain range from -1% to -6%.

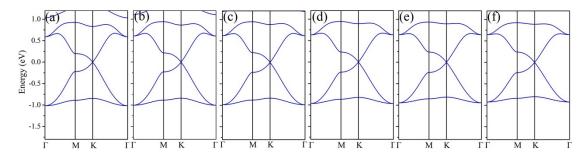


Fig. S6 Band structures of Ta₂O₃ bilayers in the strain range from 1% to 6%.

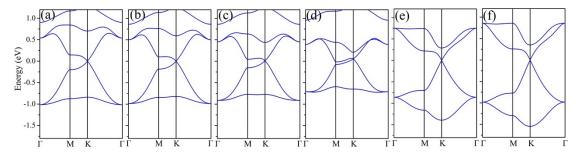


Fig. S7 Band structures of Ta₂O₃ bilayers in the strain range from -1% to -6%.

Table S1 Character table of the group D_{6h} .

$D_{6h}(6/mmm)$	#	1	6	3	2 _z	2 ₁₂₀	2100	-1	-6	-3	m_z	m_{120}	m_{10}	functions
													0	
Mult.	-	1	2	2	1	3	3	1	2	2	1	3	3	-
A_{1g}	Γ_1^+	1	1	1	1	1	1	1	1	1	1	1	1	x^2+y^2, z^2
A_{1u}	Γ_1	1	1	1	1	1	1	-1	-1	-1	1	-1	-1	
A_{2g}	Γ_2^+	1	1	1	1	-1	-1	1	1	1	-1	-1	-1	J_z
A _{2u}	Γ_2	1	1	1	1	-1	-1	-1	-1	-1	1	1	1	Z
${ m B}_{1 m g}$	Γ_3^+	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	
B_{1u}	Γ3-	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	
$ m B_{2g}$	Γ_4^+	1	-1	1	-1	-1	1	1	-1	1	-1	-1	1	
B_{2u}	Γ_4	1	-1	1	-1	-1	1	-1	1	-1	1	1	-1	
E_{2u}	Γ_6	2	-1	-1	2	0	0	-2	1	1	-2	0	0	
E_{2g}	Γ_6^+	2	-1	-1	2	0	0	2	-1	-1	2	0	0	(x^2-y^2, xy)
E _{1u}	Γ5-	2	1	-1	-2	0	0	-2	-1	1	2	0	0	(x, y)
E_{1g}	Γ_5^+	2	1	-1	-2	0	0	2	1	-1	-2	0	0	$(xz,yz), (J_x,J_y)$