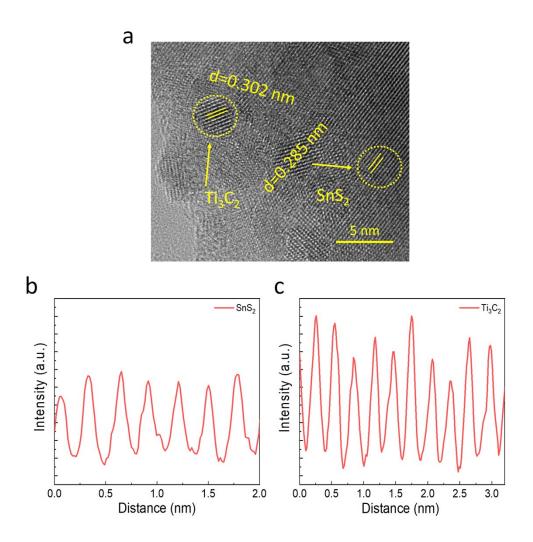
Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supplementary information

MXene-TMD Heterostructure Photodetector: Engineering Ti₃C₂/SnS₂ Interface for High-Speed Visible Light Detection

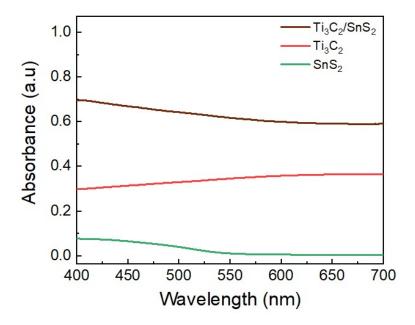
Chayan Das^a, Suresh Kumar^a, Jeny Gosai^c, Mubashir Mushtaq Ganaie^a, Anjali Sharma^{d,e}, Mahesh Kumar^b, Ankur Solanki^c, Arup K. Rath^{d,e}, Satyajit Sahu^a*

^aDepartment of Physics, Indian Institute of Technology Jodhpur, Jodhpur 342037, India

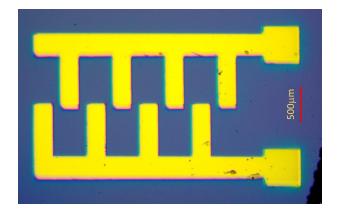

^bDepartment of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342037, India

^cDepartment of Physics, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar 382426, India

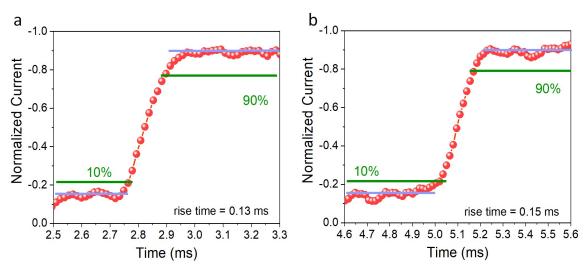
^dCSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India


^eAcademy of Scientific and Innovative Research, Ghaziabad, 201002, India

email: satyajit@iitj.ac.in


Figure S1: (a) HRTEM image of Ti_3C_2/SnS_2 heterostructure with distance profile scans at specific regions of (b) SnS_2 and (c) Ti_3C_2 .

The HRTEM image of Ti_3C_2/SnS_2 heterostructure is shown in **Figure S1 a**. The distance profile scan of SnS_2 is shown in **Figure S1 b**, and the average interplanar distance was found to be 0.285 nm. The distance profile scan of Ti_3C_2 is shown in **Figure S1 c**, and the average interplanar distance was found to be 0.302 nm.


Figure S2: Representation of absorbance of SnS_2 , Ti_3C_2 , and Ti_3C_2/SnS_2 with respect to wavelength.

The absorbance of SnS_2 , Ti_3C_2 , and Ti_3C_2/SnS_2 with respect to wavelength is shown in **Figure S2a.** It shows an improved absorption of Ti_3C_2/SnS_2 compared to both individual components. For our sample (solid sample) we used diffused reflectance in the integrating sphere embedded in the system and used the Kubelka-Munk transformation function to calculate the absorbance.

Figure S3: Image of one individual device (cell) with scale bar of 500 μm.

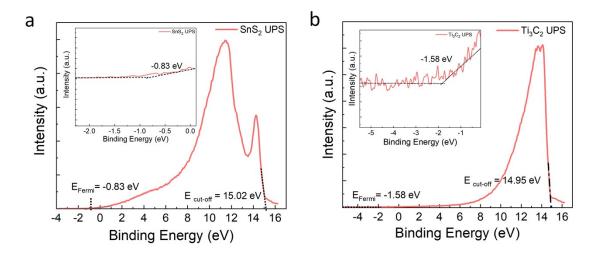

The device image is shown in **Figure S3**. The image of one individual device (cell) is shown in **Figure S3a**.

Figure S4: Rise time calculation of Ti_3C_2/SnS_2 -based device (a) set 1, (b) set 2, with bias voltage of -5V and under light of 455 nm wavelength and intensity of 100 μ W/cm².

The time necessary to change the photocurrent from 10% to 90% was used to compute the response time. We repeated the experiment of determining the Ti₃C₂/SnS₂-based device. It exhibited a rise

time of 0.13 (Figure S4 a) and 0.15 ms (Figure S4 b). And the rise time shown in (Figure 8 d) is 0.17 ms. The average rise time (0.13 + 0.15 + 0.17) ms/3 = 0.15 ms.

Figure S5: Ultraviolet photoelectron spectroscopy (UPS) spectrum plot of (a) SnS₂ and (b) Ti₃C₂ with respect to energy.

The ultraviolet photoelectron spectroscopy (UPS) measurement was performed using a He-I α light source with an energy of 21.22 eV. The UPS plot of SnS₂ is shown in **Figure S5 a.** The work function (WF) was calculated using the formula WF = 21.22-E_{cut-off} - E_{Fermi} = 5.37 eV. The WF of Ti₃C₂ was also calculated to be 4.70 eV from the UPS plot of **Figure S5 b.**

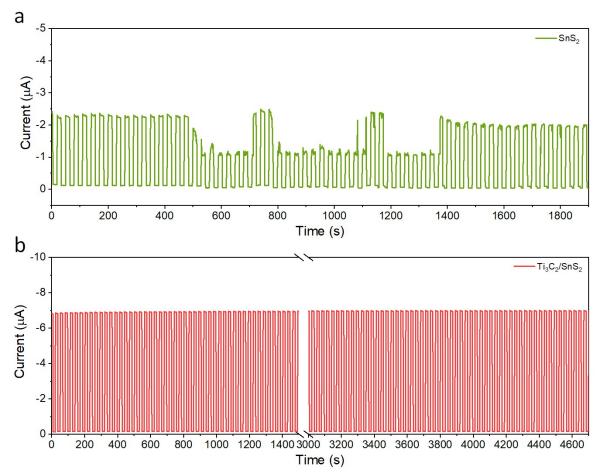

We fabricated four Ti₃C₂/SnS₂ devices, i.e., D1, D2, D3, and D4, excluding our studied device, on which pristine SnS₂ also showed interconnectedness across the channel, in a single wafer. Their photo and dark current levels, and photo to dark current ratio were added in Table S1.

Table S1: Obtained photo and dark current levels, and photo to dark current ratio of another four Ti₃C₂/SnS₂ based devices with a bias voltage of -5V, and wavelength of 455 nm along with an intensity of 7.5 mW/cm².

Device	$I_{ph}\left(\mathbf{A}\right)$	$I_{dark}\left(\mathbf{A}\right)$	I_{ph}/I_{dark}
D1	1.31×10^{-5}	1.44×10^{-7}	153
D2	4.32×10^{-6}	1.09×10^{-7}	39
D3	4.83×10^{-6}	1.08×10^{-7}	33

D4	3.21×10^{-6}	1.16×10^{-7}	28

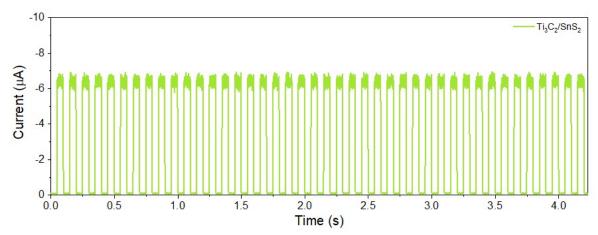
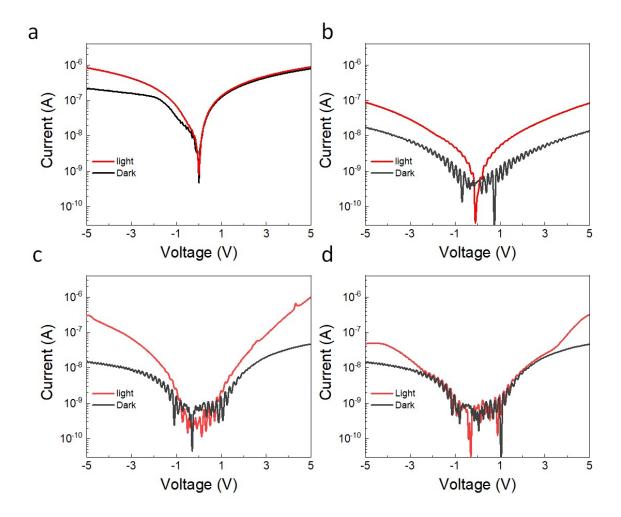

The current levels of Ti_3C_2/SnS_2 device in presence and absence of light are denoted as ^{I}ph and $^{I}dark$ with a wavelength 405 nm of and an intensity of 7.50 mW/cm². The max photo-to-dark current ratio $^{I}ph/^{I}dark$ for all these devices are calculated. As their ratio is less than our reported device, we did not proceed with the other characterizations, considering it a low-performance device.

Figure S6: (a) Cycling performance of pristine SnS_2 -based device for 1900 s under continuous illumination (455 nm, 100 μ W cm⁻², pulse width 15 s).


(b) Cycling performance of Ti₃C₂/SnS₂-based device after one-month ambient storage for 4700 s under the same conditions.

The same cycle test was performed with only the SnS₂-based device after one month by applying sequential pulses with a pulse width of 15s. The device's response clearly shows its degradation in the ambient. The test lasted for 1900 s (**Figure S6a**), indicating poor stability under ambient conditions. One of the possible reasons is electrochemical reactions in the presence of light, oxygen, and humidity ¹⁷. It affects the photoinduced electrons/holes at the interface of materials by redox reaction. In presence of oxygen, NO₂ and, toxic gases the materials create different kind of oxide nitride and salts which permanent damage in device performance ¹⁸. But on the other hand, the Ti₃C₂/SnS₂-based device showed its excellent stability after one month in ambient (**Figure S6b**), which shows its potential against absorbents like moisture, oxygen, etc.

Figure S7: Cycle test of the Ti_3C_2/SnS_2 photodetector performed after five months in ambient conditions using 100 ms light pulses at 455 nm and 100 μ W cm⁻², with a sampling interval of 0.56 ms per point.

The Ti₃C₂/SnS₂ device shows clear and reproducible on/off transitions within the 4.5 s test duration, corresponding to ~45 cycles. The extracted rise and decay times (~0.15 ms and ~0.17 ms) are consistent with Figure 8, confirming that the device remains fully functional under rapid optical modulation and validating its high-speed photoresponse capability.

Figure S8: The I-V characteristic of Ti₃C₂-SnS₂-devices drop casted with different concentrations (a) 2 mg/L (b) 1 mg/L, (c) 0.5 mg/L, (d) 0.1 mg/L of Ti₃C₂ with a bias voltage of -5V, and wavelength of 455 nm along with an intensity of 7.5 mW/cm².

The photo-to-dark current ratios were found to be 3.8, 5.5, 15.2, and 3.2 for 2, 1, 0.5, and 0.1 mg L^{-1} , respectively. The optimized concentration of 0.5 mg L^{-1} provided the highest performance and was used in the reported device. These results demonstrate the influence of Ti_3C_2 loading on interfacial charge transport and overall photodetection efficiency.