Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Alloying Au into Cu/Cu₂O/Nickel Foam Photoanode for Solar-

Enhanced Hydrogen Production Coupled with Glucose Oxidation

Chinh Chien Nguyen^{a,b}*, To Luong Nguyen^c, Do Thi Thuy Van^c, Trung Hieu Le^d, Lam Son Le^d, Minh Tuan Nguyen Dinh^e, Thi Van Thi Tran^d, Nguyen Dang Giang Chau^d, Thi Hong Chuong Nguyen^{a,b}, Anh Tuyen Luu^f, Ekaterina Korneeva^g, Nguyen Van Tiep^h, My Uyen Dao^{a,b}, Minh Khoa Duongⁱ, and Trong-On Doⁱ*

^aCenter for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Danang, 550000, Vietnam.

^bFaculty of Natural sciences, Duy Tan University, Danang, 550000, Vietnam.

^cFaculty of Physics and Chemistry, The University of Danang - University of Science and Education, Danang 550000, Vietnam.

^dFaculty of Chemistry, Hue University of Sciences, Hue University, Thua Thien Hue 530000, Vietnam.

^eThe University of Danang - University of Science and Technology, Danang 550000, Vietnam.

^fCenter for Nuclear Technologies, Vietnam Atomic Energy Institute, Ho Chi Minh City, 700000, Vietnam.

gFlerov Laboratory of Nulear Reactions, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Reg., Russia.

^hInstitute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 10000, Vietnam.

ⁱDepartment of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Quebec, Quebec G1 V0A6, Canada

*Corresponding authors: nguyenchinhchien@duytan.edu.vn (C.C.N.), Trong-On.Do@gch.ulaval.ca (T.O.D.)

1. Chemicals and Experimental Session

1.1. Chemicals

Copper (II) nitrate trihydrate (Cu(NO₃)₂.3H₂O, \geq 99.5 %), gold(III) chloride trihydrate (HAuCl₄.3H₂O, \geq 99.9 %), glycerol (C₃H₈O₃, \geq 99 %) were supplied from Merck. Glucose (C₆H₁₂O₆, 99.9 %) and potassium hydroxide (KOH, 99 %) were purchased from Sigma Aldrich and used without further purification. Nickel foam (NF) (99.9 %) was used as support and provided by Beijing Beike 2D Materials Co., Ltd. Deionized water was used throughout all experiments.

1.2. Synthesis of Au-Cu/NF and compared samples

1.2.1 Synthesis of Au-Cu/NF

The Au-Cu/NF sample was fabricated via a facile hydrothermal method. Briefly, 1.03 g Cu(NO₃)₂.3H₂O, 0.039 g HAuCl₄.3H₂O, and 7.30 g C₃H₈O₃ were dissolved in 50.0 mL deionized water and stirred continuously for 1.5 hours. The resulting solution was transferred into a Teflon-lined autoclave. Then, the NF (3 cm x 3 cm), pre-treated in 50.0 mL of 1.0 M HCl solution for 45 minutes in a sonication bath, followed by sequentially washing with ethanol and deionized water, was placed in the prepared mixture before being hydrothermally treated at 160 °C for 16 h. After cooling to room temperature, the obtained material (denoted as Au-Cu/NF) was subsequently washed with deionized water and ethanol to remove residual reactants, and then dried at 60 °C for further experiments.

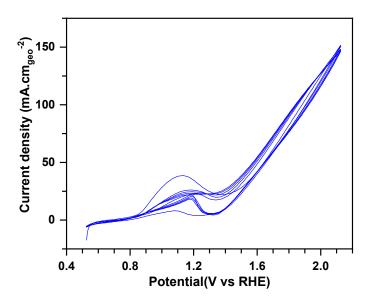
1.2.2 Synthesis of Cu/NF

A similar synthetic procedure was utilized for the Cu/NF sample without the addition of Au precursor.

1.3. Characterizations

The morphology and chemical analysis of as-prepared catalysts were examined by scanning electron microscopy (SEM, Tescan Vega) equipped with an energy-dispersive X-ray spectroscopy (EDS) detector (Bruker 630M). High-resolution transmission electron microscopy (HR-TEM) of samples was conducted by the JEOL system. The powder X-ray diffraction (XRD) patterns were collected by XRD, Bruker D8. Raman spectra were recorded with a LabRAM spectrometer (Horiba). X-ray photoelectron spectroscopy (XPS) measurements were carried out with a Thermo Fisher Scientific spectrometer. The UV-Vis absorption spectra were obtained by a UV-Vis absorption spectrophotometer (Cary 300) in the wavelength range of 200 – 800 nm.

1.4. Photoelectrochemical measurements


The photoelectrochemical performance of the samples was conducted by an electrochemical workstation (PGSTAT204, Metrohm) in a standard three-electrode configuration, in which asprepared samples (with an exposed area of 1×1 cm²), platinum, and Ag/AgCl served as working, counter, and reference electrodes, respectively. The light source was supplied by a 150 W Xenon lamp (Sciencetech). The solutions of 1.0 M KOH and 1.0 M KOH + 0.10 M glucose were employed as the electrolytes. The measured potentials were converted to potential versus the reversible hydrogen electrode (vs. RHE) via the following equation:

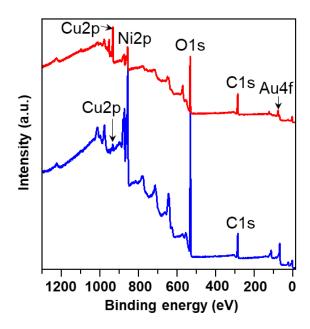
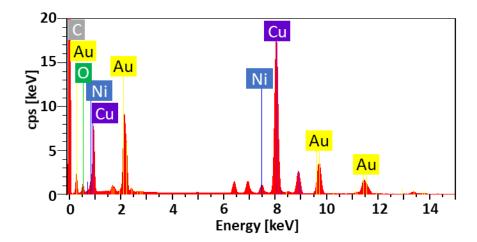
$$E_{RHE} = E_{Ag/AgCl} + 0.059 \times pH + E_{Ag/AgCl}^{0}$$
 (1)

To activate the material, cyclic voltammetry (CV) was first performed at a scan rate of 50 mV·s⁻¹ for 10 cycles (**Figure S1**). Linear sweep voltammetry (LSV) was conducted at a scan rate of 5 mV·s⁻¹. Electrochemical impedance spectroscopy (EIS) was carried out at a potential of 1.32 V vs. RHE over a frequency range of 0.1 Hz to 100 kHz with an amplitude of 10 mV. The stability of the catalyst was evaluated via a chronoamperometry test in an H-cell at a potential of 1.62 V vs.

RHE for 15 consecutive cycles, corresponding to a duration of 45 hours. The amount of evolved hydrogen was measured by the water displacement method.

2. Results

Figure S1. The CV curves of Au-Cu/NF sample electrode recorded for 10 cycles in 1.0 M KOH + 0.1 M glucose solution

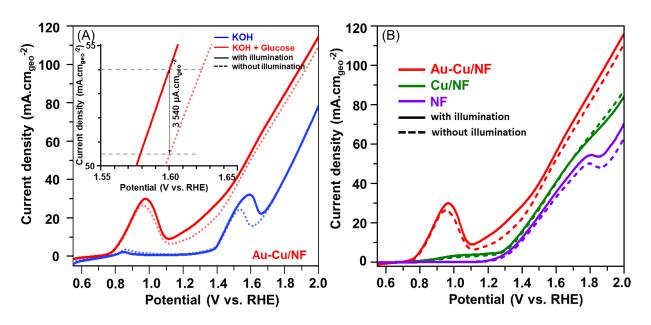

Figure S2. The survey XPS spectrum of Au-Cu/NF and Cu/NF.

Table S1. Elemental composition of as-synthesized samples according to XPS survey spectra

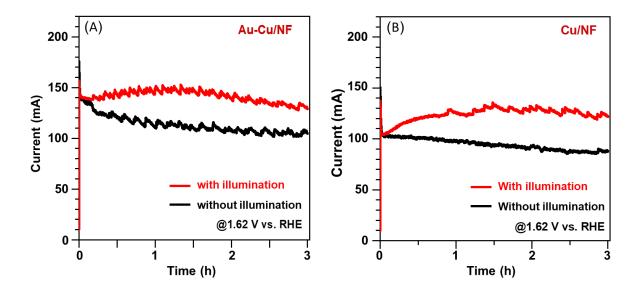

Name	% Atom	
	Au-Cu/NF	Cu/NF
C1s	9.83	28.6
Cu2p	28.56	0.89
Ni2p	37.36	19.36
O1s	24.14	51.16
Au4f	0.11	

Figure S3. EDS spectrum of Au-Cu/NF sample.

Figure S4. LSV-normalized curves of Au-Cu/NF sample with and without glucose (A) and LSV-normalized curves (B) of as-prepared Au-Cu/NF, Cu/NF, NF.

Figure S5. The chronoamperometry curves of as-prepared sample in 1.0 M KOH + 0.10 M Glucose.