Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Electronic Supplementary Information

Picric Acid sensing by Carbon Nanodots: Theoretical Validation of Selectivity

Nidhisha Va., Vijisha K Rajanb and Renuka N K*a.

^aAdvanced Materials Research Centre, Department of Chemistry University of Calicut, Kerala 673635, India. *E-mail: renuka@uoc.ac.in
bDepartment of Nanoscince and Technology
University of Calicut, Kerala 673635, India.

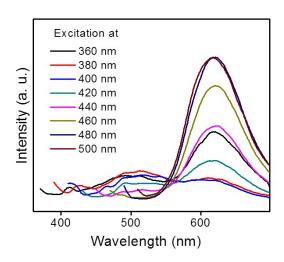


Figure S1: Excitation dependent emission of PD-CNDs

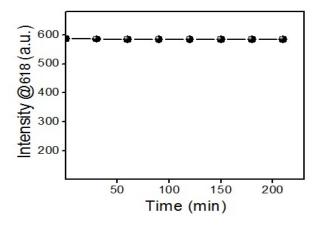
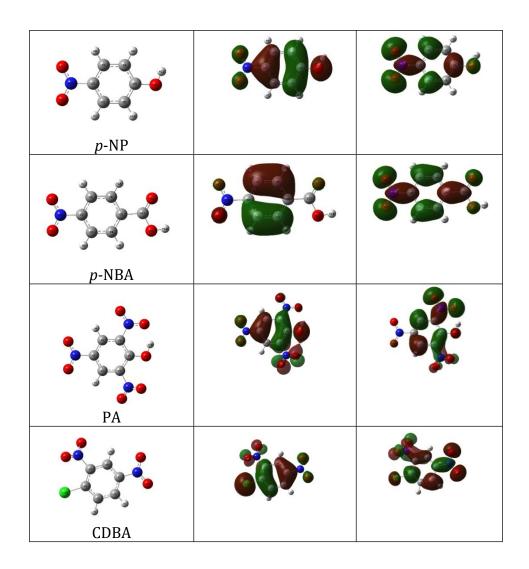


Figure S2: Photostaility of PD-CNDs under continuous UV illumination

Table S1: - analytes for the

No	Compound	Abbr.	Molecular weight	r Structure
1	o-Nitrotoluene	o-NT	137.14	O ₂ N
2	m-Nitrotoluene	m-NT	137.14	O_2N
3	p-Nitrotoluene	p-NT	137.14	O_2N
4	m- Nitrobenzaldehyde	m-NBZA	151.12	O ₂ N CHO
5	p- Nitrobenzaldehyde	p-NBZA	151.12	O ₂ N CHO
6	Nitrobenzene	NB	123.11	\sim NO ₂
7	p-Nitrophenol	p-NP	139.11	O_2N —OH
8	p-Nitrobenzoic acid	p-NBA	167.12	O_2N —COOH
9	Picric acid	PA	229.11	O_2N NO_2 NO_2
10	1-chloro-2,4- dinitrobenzene	CDNB	202.55	NO ₂

Details of


selected

studies

11	Benzaldehyde	BZA	106.12	СНО
12	Toluene	T	92.14	
13	Aniline	A	93.14	\sim NH ₂
14	Benzoic acid	BA	122.12	СООН

Table S2: Optimized geometries and HOMO / LUMO of selected nitroaromatic compunds

Compound	номо	LUMO
o-NT		
m-NT		
p-NT		
m-NBZA		
p-NBZA		
NB		

Cyclic voltammetry measurements for determining the energy levels

The HOMO and LUMO energy levels of PD-CNDs could be estimated according to the empirical formula:

$$E_{\text{HOMO}} = -e(E_{\text{ox}} + 4.4) \tag{1}$$

$$E_{\text{LUMO}} = -e(E_{\text{red}} + 4.4) \tag{2}$$

Where E_{ox} and E_{red} are the onset of oxidation and reduction potential for PD-CNDs respectively. The E_{red} was determined to be -0.21 V. The corresponding E_{LUMO} was calculated to be -4.19 eV. To determine the HOMO levels, we combined the E_{red} with the optical energy band gap (E_{g} , resulting from the absorption edge in the absorption spectrum):

$$E_{\text{HOMO}} = E_{\text{LUMO}} - E_{\text{g}} \tag{3}$$

 $E_{\rm g}$ was estimated to be 2.41 eV. So, the $E_{\rm HOMO}$ was calculated to be -6.60 eV.

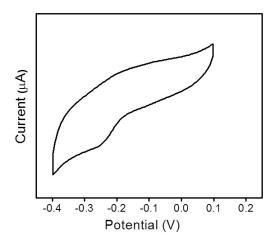


Figure S3: Cyclic voltammograme of PD-CNDs

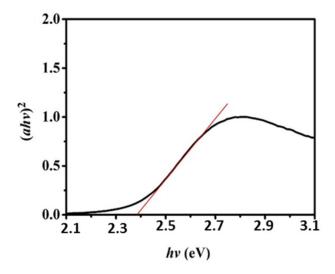


Figure S4: Tauc plot derived from UV Visible absorbance spectrum of PD-CNDs