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Figure S1. Band structures of several materials in MA>Z4 under PBE+SOC and HSE+SOC.
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Figure S2. Spin texture diagrams of several materials in MA»Z4 at their respective energies (referenced to the Fermi level).
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Figure S3. Band structures of several materials in MXAZ, under PBE+SOC and HSE+SOC.
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Figure S4. Spin texture diagrams of several materials in MXAZ, at their respective energies (referenced to the Fermi level).
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Figure S5. Phonon spectra of several materials in MA>Z4 and MXAZ,.
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Figure S6. Molecular dynamics simulations of several materials in MA>Z4 and MXAZ, at 400K.

TABLE S1. The Rashba strength or of various materials, the difference in work function between the two sides of the
material A®, the dipole moment p within the material, Z represents the sum of atomic numbers, and the electronegativity y
of atoms at different positions.

Material aR(eVA) AD(V) u(eA) Z M (kJ/mol) X (kJ/mol) ¥Z1(kJ/mol)
HfTeCAsBi 2.083 1.061 -0.0739 246 1.30 2.10 2.18
HfTeCPBi 1.775 1.268 -0.0865 228 1.30 2.10 2.19
HfSeCAsBi 1.847 1.275 -0.0851 228 1.30 2.55 2.18
HfSeCPBi 1.380 1.487 -0.0973 210 1.30 2.55 2.19
HfSCASsBi 1.631 1.419 -0.0931 210 1.30 2.58 2.18
HfSCPBI 1.144 1.602 -0.1023 192 1.30 2.58 2.19
ZrTeCAsBi 2.072 1.118 -0.0783 214 1.33 2.10 2.18
ZrTeCPBi 1.749 1.322 -0.0908 196 1.33 2.10 2.19
ZrSeCAsBi 1.849 1.348 -0.0912 196 1.33 2.55 2.18
ZrSeCPBi 1.346 1.494 -0.0988 178 1.33 2.55 2.19
ZrSCAsBi 1.668 1.429 -0.0942 178 1.33 2.58 2.18
ZrSCPBI 1.133 1.609 -0.1040 160 1.33 2.58 2.19
TiTeCAsBi 1.667 1.19 -0.0780 196 1.54 2.10 2.18
TiTeCPBi 1.360 1.341 -0.0860 178 1.54 2.10 2.19
TiSeCAsBi 1.253 1.384 -0.0869 178 1.54 2.55 2.18
TiSeCPBi 0.781 1.591 -0.0983 160 1.54 2.55 2.19
TiSCAsBi 1.030 1.623 -0.0994 160 1.54 2.58 2.18
TiSCPBI 0.552 1.788 -0.1073 142 1.54 2.58 2.19
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Figure S7. The comparison between the calculated values of Rashba spin-orbit coupling strength or obtained from different models and

the results calculated by DFT method.
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Figure S8. The variation of Rashba constant ar with biaxial strain for several materials in MA»Z4 and MXAZ, systems.
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Figure S9. The variation of Rashba constant ar with uniaxial strain for several materials in MA>Z4 and MXAZ, systems.
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Figure S10. The variation of Rashba constant or with electric field for several materials in MA2Z4 and MXAZ; systems.
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Figure S11. PDOS of the constituent atoms within the ZrSeCAsBi system.
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